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ABSTRACT

Mathematical models of aircraft dynamics typically contain quantities

called parameters, which depend, in general, on the flight condition and the

aircraft geometry. It is important to be able to estimate these parameters

accurately from flight testing the aircraft. The parameter estimates from flight

data are used to corroborate wind tunnel parameter estimates, validate and

improve a priori aerodynamic calculations, update aircraft dynamic models

for flight control system refinement, and predict aircraft responses for realistic

flight simulation and ground-based pilot training.

Today, many fighter aircraft are designed with inherent longitudinal

static instability in order to enhance maneuverability and performance.

These aircraft must employ stability augmentation systems which, because of

safety considerations, cannot be turned off. In addition, multiple control

surfaces are required for enhanced performance in expanded flight envelopes,

such as high angle of attack flight.

The object of this research is to develop an algorithm for the design of

practical, optimal flight test inputs for aircraft parameter estimation

experiments. This algorithm must be capable of designing multiple input

experiments for estimation of open loop model parameters from (necessarily)

closed loop flight test data.

A general, single pass technique was developed which allows global

optimization of the flight test input design for parameter estimation using

the principles of dynamic programming. Provision was made for practical

constraints on the input form, including amplitude constraints, control

system dynamics, and selected input frequency range exclusions. In addition,

the input design was accomplished while imposing output amplitude

constraints required by model validity and considerations of safety during the

flight test. The algorithm has multiple input design capability, with optional

inclusion of a constraint that only one contro! move at a time, so that a

human pilot can implement the inputs. The dissertation includes a new

formulation of the optimal input design problem, a description of a new

approach to the solution, and a summary of the characteristics of the

algorithm, followed by three example applications of the new technique



which demonstrate the quality and expanded capabilities of the input designs

produced by the new technique. In all cases, the new input design approach

showed significant improvement over previous input design methods in

terms of achievable parameter accuracies.

The work described in this document was done in partial fulfillment of

the requirements for the Doctor of Science degree in Aerospace Engineering at

The George Washington University Joint Institute for the Advancement of

Flight Sciences (JIAFS), NASA Langley Research Center, Hampton, Virginia.
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Chapter I - Introduction

Aircraft flight tests designed specifically for parameter estimation are

generally motivated by one or more of the following objectives:

1. The desire to correlate aircraft aerodynamic characteristics obtained

from wind tunnel experiments and aerodynamic calculations with flight

test data.

2. Refinement of the aircraft model for control system analysis and design.

3. Accurate prediction of the aircraft response using the mathematical

model, including flight simulation and flight envelope expansion.

4. Aircraft acceptance testing.

The design of an experiment to achieve any of the above objectives

involves specification of the instrumentation and signal conditioning, the

flight test operational procedure, the inputs for the flight test maneuver, the

model structure, and the parameter estimation algorithm. In this

dissertation, the maneuver design, or, specifically, the design of flight test

input signals, will be studied independently of the other aspects which impact

the success of the flight test. Other considerations in the flight test design can

be accounted for in the detail of the input design problem formulation. The

fundamental principles and procedures regarding the design of the input

remain unaltered.

In order to obtain the most accurate estimates of aircraft model

parameters, the information content in the aircraft response during the flight

test must be maximized. In general, an aircraft model contains multiple

response variables and multiple aircraft model parameters. The information

contained in the aircraft response is embodied in a matrix called the

information matrix, whose elements are combinations of partial derivatives

of the aircraft response variables with respect to the model parameters. These

partial derivatives are called sensitivities, and are obtained by solving the

so-called sensitivity equations that result from differentiating the state and

output equations for the aircraft model with respect to each of the parameters



in the model. Information matrix elements also depend on the

measurement sampling rate, and the measurement noise characteristics,

which are indirectly specified when selecting the instrumentation system.

In this work, the model structure is assumed known, and aircraft

model parameters are assumed to be estimated from the flight test data using

an asymptotically unbiased and efficient parameter estimation technique

known as maximum likelihood estimation [1]. It is not necessary that the

parameter estimation algorithm be specifically maximum likelihood. Any

other asymptotically unbiased and efficient estimator could be used instead.

The accuracies of the estimated model parameters are given by parameter

standard errors, which are computed as part of the parameter estimation

algorithm. The standard error is the value of one standard deviation

associated with the estimate of a model parameter. It can be shown that the

theoretical best (lowest) values for the parameter standard errors depend only

on the information content of the experiment, as embodied in the elements

of the information matrix. These theoretical lower bounds on the parameter

standard errors are referred to as Cramer-Rao bounds. The Cramer-Rao

bounds are independent of the parameter estimation algorithm used to

extract parameter estimates and standard errors from the data records,

provided that the parameter estimation algorithm is asymptotically unbiased

and efficient. Thus, the merit of an input design for aircraft parameter

estimation can be determined by examining the Cramer-Rao bounds, since

the latter depend only on the information matrix resulting from the response

of the aircraft to the application of the input. Comparisons using the

Cramer-Rao bounds separate the merits of the input design from the merits

of the parameter estimation algorithm used to extract the model parameter

estimates from the data. In other words, input designs are compared based

only on the information content in the experiment, the latter being calculable

before any parameter estimation is done, and thus independently of the

particular algorithm used to estimate the values of the parameters.

The performance, and thus the optimality, of an input design depends

on the values of the Cramer-Rao bounds associated with that input. Implicit

in the computation of the Cramer-Rao bounds is the a priori dynamic system

and measurement model. When designing inputs for aircraft parameter

estimation flight tests, there must be a complete model ( including parameter

values ) of the physical system to use during the process of the input design.
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That is, a model complete with parameter values is necessary in order to

design an experiment which will produce estimates of the parameters in the

model. This has been called the "circularity" problem [2]. For aircraft, the

problem is mitigated by use of parameter estimates obtained from either

aerodynamic calculations or wind tunnel experiments. The calculation of the

Cramer-Rao bounds also implicitly includes the time length of the flight test

data run, along with any imposed constraints on either the input form or

output response variables.

In the past, research works which addressed the input design problem

for airplane parameter estimation used a linear time-invariant dynamic

model, where the state variables were perturbations about some trim

condition [2] [3] [4] [5] [6] [7] [8]. The most prevalent approach to optimizing

the input for aircraft parameter estimation experiments was first done by

Mehra [5]. The problem was formulated as a fixed time optimal control

problem, with minimization of a time integral of a scalar function of the

information matrix as the criterion of optimality. Some difficulty has arisen

as a result of the desire to find the best input with respect to a scalar measure

of optimality. A scalar norm of the information matrix must be used to

encompass the multiple sensitivities contained in the information matrix.

Denoting the information matrix by M, previous works have maximized

Tr[M], or det [M], or minimized Tr[M -1], det [M q ], or Xmax [M -1] where _,max is

the maximum eigenvalue of M -1, among others. There has been some debate

as to which matrix norm should be used to obtain the "best" set of parameter

standard errors. Reference [6] gives a discussion and review of the different

matrix norms used by various researchers. Regardless of the scalar optimality

criterion used for the input optimization, comparisons regarding the

performance of the designed inputs must always be made by examining the

Cramer-Rao bounds, since these are the theoretical lowest parameter standard

errors achievable with a given input. The validity of using the Cramer-Rao

bounds to assess relative efficacy of input destgns for airplane parameter

estimation experiments has been verified experimentally [2] [7]. The

Cramer-Rao bounds are of principal significance in designing inputs for

parameter estimation experiments.

In practice, there are often subsets of the entire parameter set which are

of greater importance, and hence need to be estimated with greater accuracy

than the remainder of the parameter set. The subsets depend strongly on the

3



end purpose of the parameter estimates. This situation considerably

complicates the problem of choosing a suitable matrix norm of M for the

optimal input design. In past work, a constant weighting matrix has been

introduced in association with the information matrix, M, in order to account

for varying importance of subsets of the entire parameter set [6].

Researchers who used any of the various matrix norms of M to design

inputs for aircraft parameter estimation also used a fixed test time [2] [3] [4] [5]

[6] [7] [8]. The value of the fixed test time was usually chosen by a heuristic

argument based on previous experience. Chen [9] was the first to realize that

the true situation in practice is that specific goals for the Cramer-Rao bounds

could be specified a priori, and that the appropriate goal of the flight test was

not to optimize some norm of M over a fixed time, but to reduce the ( limited

and expensive ) flight test time required to achieve desired goals for the

Cramer-Rao bounds. This approach eliminates the need for any weighting

matrices, since the objective has been changed to a direct requirement that

Cramer-Rao bounds be less than or equal to specified target values.

Parameters with more stringent accuracy requirements are simply assigned

lower target values for their respective Cramer-Rao bounds. This procedure

implicitly implements parameter weighting. A priori Cramer-Rao bound

goals are a function of the purpose for which the parameter estimate values

are intended, and can be specified by the end user of the parameter estimates.

Unfortunately, the Chen approach required extensive iteration and

considerable judgment on the part of the analyst for its use. Rather than use

an optimization procedure, Chen simply tried a number of candidate input

designs, which were generated as members of an orthogonal function set

called Walsh functions. Thus, the Chen solution lacked optimality

properties, in that no conditions which correspond to an optimal solution

(such as a zero gradient of the cost with respect to the input vector) were

satisfied.

In many previous works, the input design for aircraft parameter

estimation was done with the input subject to an energy constraint consisting

of a time integral of the square of the input amplitude. Values used for the

energy constraint were presumably based on experience with similar flight

test situations. In cases where the optimal input problem has been

formulated as an optimal control problem using a scalar norm of the

information matrix integrated over a fixed time as the optimality criterion, an



energy constraint on the input was preferred due mostly to the computation

simplicity which results from such a constraint. The justification of this

constraint form has been that the designed input amplitudes are kept at a

reasonable level, since the test time has been fixed, and the resulting output

amplitudes are also (indirectly) limited. Another type of input energy

constraint was used in the work of Reid [3], who required that the input

amplitude be full positive or full negative amplitude at any time during a

fixed test time. As shown in Chapter II, this amounts to a constraint on the

input energy.

The relatively small number of references for this dissertation reflects

the fact that much of the research done on optimal input design addresses

energy constrained, single input, single output problems, often in the

frequency domain, and often with few (one or two) model parameters. These

works were not considered relevant to the general multiple input, multiple

output, multiple parameter, relatively short time, optimal input design

problem for aircraft parameter estimation, and were therefore omitted from

the reference list. To the author's knowledge, the reference list given here

represents the significant work in optimal input design for aircraft parameter

estimation experiments.

The main purpose of this dissertation is to describe and demonstrate a

new approach to the optimal input design problem for aircraft parameter

estimation experiments. Motivation for the development of the new

technique arose from several important considerations in the modern flight

test environment which were either addressed poorly or not at all in

previous works. These considerations are briefly outlined below.

Multiple input design - Flight testing of modern aircraft for parameter

estimation often requires a multiple input design. Here, "input" can mean

either control surface deflections directly, or pilot station inputs, depending

on the flight test equipment. Modern aircraft have numerous control

surfaces in order to achieve expanded flight envelopes and capabilities, and to

improve failure robustness. The work described here provides multiple

input design capability in a straightforward way.

Practical output constraints - Two important considerations require that

inputs for parameter estimation flight experiments be designed so that output

5



variable amplitudes remain within specified limits. First, the safety of the

pilot and the aircraft requires that output variable amplitudes be constrained,

so as to avoid unusual aircraft attitudes from which the pilot cannot recover,

or excessive accelerations or rotation rates which may damage the aircraft.

Second, since the aircraft model is typically valid only over certain ranges of

amplitudes of certain output variables, an experiment which takes the aircraft

outside the flight regime where the mathematical model is assumed to be

valid degrades the quality of the data for parameter estimation purposes.

Previous works relied on the input energy constraint to keep output variable

amplitudes reasonable. This approach becomes particularly difficult to use for

multiple inputs or closed loop models, along with being unrepresentative of

the true practical flight test situation. The present approach includes output

amplitude constraints directly as part of the optimal input design problem

formulation.

Closed loop models - Many modern aircraft are designed to be open loop

unstable in order to enhance performance. This requires the use of full time

stability augmentation systems (SAS) which employ automatic closed loop

control. These systems cannot be turned off for any length of time because of

safety considerations. For this case, it is necessary to include a model of the

control system when analyzing the aircraft response, in order to be able to

separate the effects of the automatic control system from the open loop

aerodynamics of the airframe. The aircraft open loop parameters are of

principal interest, since these are required to realize the objectives stated at

the beginning of this chapter. The technique described here can accommodate

the model structure necessary to design inputs for estimating open loop

model parameters under the condition that only closed loop response data are

available. The system response must, however, be limited to a region of

linear control effectiveness and linear open loop dynamics. When

nonlinearities are involved, the appropriate model structure is a function of

the particular input used to excite the system [6]. But, the model structure is

needed in the first place in order to design the input for parameter estimation

purposes. Thus, input design for nonlinear systems involves a complex

circularity. The problem of input design for nonlinear models is recognized

as important and worthy of attention; however, this problem is also

considered outside the scope of the present investigation, and is not

r
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addressed. It was assumed that the capability for imposing arbitrary output

amplitude constraints could be used in any flight condition to restrict the

system behavior to a regime which could be adequately described by a linear

model structure.

Practical control implementation - Regardless of whether a human pilot or a

computer implements the designed inputs, it must be assured that the inputs

can be realized. This means that control system dynamics should be included

in the input design analysis insofar as possible. When a human pilot must

implement the input design, allowance must be made for the limited

accuracy and repeatability of input forms generated by humans, particularly

for the case of multiple inputs. Additional practical limitations pertain to the

input amplitude and the input frequency spectrum. It is preferable to include

these practical constraints on the input form as an integral part of the analysis

and input design procedure. The present approach does this.

Minimum flight test time - Resources are always limited; therefore, the flight

test experiment should be designed to minimize the flight test time required

to answer the questions which engendered the idea of an experiment.

Minimizing the flight test time in the context of the present work is

equivalent to designing so that the a priori Cramer-Rao bound goals can be

achieved in the minimum flight test time. This factor is significant due to

the limited availability of flight test aircraft, and the great expense associated

with flight testing modern aircraft. In addition, for the case of flight testing at

high angle of attack, the time available for flight maneuvers at a given flight

condition is limited by altitude loss during the flight test. The approach

described here uses the principles of dynamic programming and Bellman's

principle of optimality [10] [11] to produce an input which is globally time

optimal, subject to the constraints of the problem formulation.

Maximum parameter accuracy for a fixed flight test time - In practical flight

test situations, it is often necessary to design an input for a fixed flight test

time, chosen a priori. The principles of dynamic programming can be applied

to this situation as well, rendering a global optimal solution for a chosen cost

function which incorporates the minimization of the Cramer-Rao bounds,

again subject to the constraints of the problem formulation.



This work is an exposition of a new approach to the optimal input

design problem for aircraft parameter estimation experiments, as well as a

demonstration of the capabilities of the new technique for producing

practical, optimal input designs. The remainder of the dissertation will

describe the problem formulation and solution methodology, followed by a

summary of the solution algorithm characteristics and three example

applications of the new technique. The first example is the solution of a

problem studied by other researchers, and demonstrates improved input

designs using the new approach. The second example is the solution of a

problem not treated elsewhere, which highlights the multiple input

capability, output amplitude constraint capability, and the practical input

form constraint features included in the new technique. Finally, the third

example demonstrates the optimal input design technique as applied to a

closed loop model of the F-18 fighter aircraft longitudinal dynamics. A six

degree of freedom nonlinear simulation which uses tabular wind tunnel data

for the vehicle aerodynamics was used as the test aircraft. A summary and

conclusions section completes the dissertation.
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!L-_ Problem Formulation

The goal of the work described here is to design optimal flight test

inputs for a parameter estimation experiment. Optimality is a property

whose meming depends on the problem formulation. In general, the

problem is specified by the dynamic system and measurement model, the

criterion of optimality, the admissible control set, and the applicable

constraints. In what follows, each of these aspects of the problem formulation

will be discussed regarding its relationship to the physical situation of flight

test for parameter estimation.

The dynamic system and output models are linear, with an

n-dimensional state vector, x, and system dynamic, control and observation

matrices F, G, and H, respectively, which, in general, depend on a

p-dimensional parameter vector, 0. The state vector has zero initial

conditions. The latter condition indicates the assumption of a perturbation

model derived relative to some specified condition. This approach provides

known initial conditions, which may be taken as zero with no loss of

generality. An input vector, u, of dimension m is assumed. The linear

output model has an output vector y of dimension q, which depends on x and

0. Amplitude constraints are imposed on all inputs and on selected outputs,

and are denoted by _tj and qk, respectively. The measurements Ym are made at

N sampling times, separated by constant sampling intervals of length At, with

additive white Gaussian measurement noise, _). The statistical properties of

the measurement noise are assumed known ( e.g., from ground calibration of

the instrumentation system). The preceding is expressed mathematically as:

x(t)=F(0)x(t)+G(0)u(t) , x(0)=0 (2-1)

y(t) = H (0) x(t) (2-2)

Ym(i) = y(i) + _)(i) i = 1, 2, 3, ..., N
(2-3)



The measurement noise _(i) is assumed Gaussian with

E{_}(i)}=0 , E {_(i)_w(j)}=R.Sij (2-4)

where E{ • } is the expectation operator, and 5ij is the Kronecker delta.

The following constraints are imposed on input and output

amplitudes:

[uj(t)[ < _j Vt, j=l, 2,...,m (2-5)

lyk(t) I _< rlk Vt, ke (1,2,...,q) (2-6)

Equations (2-1) through (2-6) give the general form of the dynamic

system and measurement model used in this work. A linear dynamic and

aerodynamic model with multiple inputs is assumed, with amplitude

constraints imposed on all inputs and selected outputs.

The issue of the robustness of the input design to inaccuracies in the a

priori values for the model parameters is not addressed in this work. This

problem is important and complex, but cannot be adequately treated here.

For the simple case of a single input, single output model with one

model parameter, the best input for a parameter estimation experiment is the

input which maximizes the sensitivity of the output quantity to changes in

the parameter over the test time, T. This can be expressed as

-1

max = rain
i=l i=1

(2-7)

where u*(t) is the scalar optimal control, U is the set of admissible controls,

and the summation over N time points approximates a time integral; with

T=NAt (2-8)

where At represents the sample time.
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The optimization of an input with respect to the scalar criterion in

equation (2-7) is straightforward. In most practical situations of interest,

however, there are multiple outputs and multiple model parameters. In this

case, the sensitivity of the outputs to changes in the model parameters is

embodied in a matrix called the information matrix. As discussed in Chapter

I, in this case it is not clear what scalar optimization criterion should be used

for the optimal input design. The (p x p) information matrix, M, is given by

the following expression, derived in Appendix A:

N 3y(i) T -I

(2-9)

The (q x p) matrix of sensitivities in the above expression is sometimes

referred to as the discrete sensitivity matrix, Sl:

Si = 3y(i)
30 (2-10)

The partial derivatives which appear in the expression for the information

matrix are found using the so-called output sensitivity equations, which are

obtained by differentiating (2-2) with respect to the components of the

parameter vector, 0, denoted by Ok,

0y _ H 0x 3H..... +--x k=l,2,...,p

30 k O0 k 30 k (2-11)

The partial derivatives of the state vector, x, with respect to Ok, known as the

state sensitivities, are found by differentiating (2-1) and switching the order of

the differentiation on the left side of the equation ( the latter procedure is

valid as long as x is analytic, which is assumed ) to obtain

d[O30_]=F 3x 3F 3G
+--x +--u k=l,2,...,p

dt 30 k 30 k 30 k (2-12)
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The (n.p) state sensitivity equations (2-12) must be solved, along with the (n)

system dynamic equations (2-1), with the results used in the (q.p) output

sensitivity equations (2-11), in order to assemble the information matrix from

equation (2-9). All initial conditions for equations (2-12) are zero, since the

initial state is assumed to be known. Thus,

3x(0)
= 0 , k = 1,2,...,p

30k (2-13)

The information matrix depends on the input indirectly through the

output and state sensitivity equations, (2-11) and (2-12), because the state

sensitivity dynamics depend on the input u directly, and both the output

sensitivities and the state sensitivity dynamics depend on x, which is a

function of u by the dynamic equations (2-1).

In Appendix A, it is shown that the inverse of the information matrix

is the theoretical lower limit for model parameter covariances computed

using any asymptotically unbiased and efficient parameter estimation

algorithm with the flight test data used to assemble the information matrix.

This theoretical lower limit is often called the dispersion matrix, D, and is

given by

-I
D=M (2-14)

Using (2-9), equation (2-14) may also be written as

D= i__l(_0 (i)--) -! _-]]

-l

(2-15)

or, using (2-10),

TR-I ]-1
D = _ S i S i

i=l
(2-16)
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M and D are symmetric, positive definite matrices, since R must be symmetric

and positive definite, and there can be no zero rows or columns in Si, as long

as the model structure indudes all the parameters.

M depends on the input time history; therefore, it follows from (2-14)

that the theoretical lower bounds on the parameter covariances are also

functions of the input time history. The diagonal elements of the dispersion

matrix, D, are the theoretical minimum values of the individual parameter

variances. The Cramer-Rao lower bounds for the parameter standard errors

are given by the square root of the diagonal elements of the dispersion matrix.

These values are denoted by ok,

O k = d,_k k , k=l,2,...,p (2-17)

where djk are the matrix elements of the dispersion matrix, D, i.e.,

D=[djk] , j=l,2,...,p , k=l,2,...,p (2-18)

The k th diagonal element of the dispersion matrix corresponds to the k th

parameter in equations (2-11) and (2-12). The Ok values in equation (2-17) may

be thought of as the minimum possible value of one standard deviation (the

standard error) for the estimate of the k th parameter.

The present work borrows from Chen's [9] view of the optimal input

design problem, in that the flight test time is minimized for attaining

Cramer-Rao bound goals which are specified a priori. From equations (2-15)

and (2-17), the achievable Cramer-Rao bounds from the dispersion matrix are

a function of the total test time, T, since T = NAt by equation (2-8). As a result

of this, an inferior input design will require a longer test time,T, to achieve

specified Cramer-Rao bound goals.

There are actually two optimal input design cases solved in this work,

both of which are useful for practical input designs in realistic flight test

situations. The two cases are the minimum time optimal input design and

the fixed time optimal input design.

In the first case, the optimal input is that which achieves specified goals

for the Cramer-Rao bounds in minimum time, subject to the constraints of
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the problem formulation. This is a minimum time problem, so that the cost,

J, is given by

J = T when ck < _k V k=l,2,...,p (2-19)

where _e are the goal values for the Cramer-Rao bounds specified a priori,

and T is now a variable flight test time to be minimized. Minimizing J in

equation (2-19) is equivalent to finding the input time history with

minimum N in equation (2-15) when the condition (dkk)1/2 < _k _' k=l,2,...,p

is satisfied.

In the second case, the flight test time, T, is fixed, and the optimal input

is that which achieves minimum Cramer-Rao bounds over a fixed time, T,

subject to the constraints of the problem formulation. This is a fixed time

problem, with the cost function

k=!
(2-20)

where ok are the Cramer-Rao bounds from equation (2-17), and N is fixed in

equation (2-I5).

In chapter III, the method of solution is outlined for both the

minimum time problem, with cost given by equation (2-19), and the fixed

time problem, with cost given by equation (2-20). The topic of constraints is

addressed next.

In past work, optimal input design for aircraft parameter estimation

was carried out with the input subject to an energy constraint of the form:

fo T u(t)T(t) dt : E
(2-2I)

where E is some fixed value of the allowable input energy. The interval of

integration, [ 0,T ], was fixed also, and corresponds to the flight test time.

Values used for the energy constraint, E, and the flight test time, T, were

typically chosen by heuristic arguments based on experience with similar

flight test situations.
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In practice, there is no direct constraint on the amount of input energy

which can be applied during the flight test, since neither the pilot nor any

control system have inherent energy limitations. The practical flight test

situation dictates that the constraints be directly on the amplitudes of both the

input and the output variables, as given by equations (2-5) and (2-6),

respectively. Input amplitude constraints are necessary because any aircraft

has limitations on control surface movements due to mechanical stops, flight

control software limiters, or linear control effectiveness limitations. In

addition, the safety of the aircraft and pilot during the flight test, as well as the

validity of the aircraft model, require that selected output variable amplitudes

stay below threshold values throughout the flight test. The constraint form

(2-21) attempts to achieve all of these practical amplitude constraints in an

indirect and imprecise way, in order to reap the benefit of computational

simplicity for a fixed time optimal control solution using variational calculus.

Use of the constraint (2-21) compromises the effectiveness of the input by not

allowing full advantage to be realized within whatever amplitude constraints

are imposed on the input and output variables by the circumstances of the

flight test. Previous studies have imposed the constraint (2-21), and then,

after the design was completed, checked the input and output amplitudes

through simulation to make sure that the practical amplitude constraints

were not violated during the flight test [2] [3] [4] [5] [7] [8] [9] [12]. The present

work solves the optimal input design problem with amplitude constraints

imposed directly on the input and output variables as part of the problem

formulation. Further background material and rationale for this decision

follows.

Define a "bang-bang" input as an input whose amplitude can only be

full positive or full negative at any time, which means that the admissible

control set, Ub, has only two elements for a scalar input, namely full positive

amplitude and full negative amplitude,

Ub= { +_,-_ }_
(2-22)

u(t) _u b , t_[0,T]
(2-23)
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where +_ and -_t are the upper and lower input amplitude constraints,

respectively.

For any "bang-bang" input form over a fixed time interval, the energy

constraint (2-21) is equivalent to an amplitude constraint. For example, the

"bang-bang" input signals shown in figures l(a) and l(d) have the same total

test time, and different energy, as computed from equation (2-21). It is thus

necessary that these signals also have different amplitudes, as can be seen

from figures l(a) and l(d). in fact, for these fixed time "bang-bang" input

forms, energy and amplitude constraints are related by

E = _2 T (2-24)

For input forms other than the "bang-bang" type, this equivalence of

amplitude and energy constraints is not valid; however, in some approximate

sense, it may be claimed that the constraint in equation (2-21) amounts to an

amplitude constraint on the input when the test time is fixed. The amplitude

constraint via an energy constraint is imprecise to the extent that the input

form being considered differs from the "bang-bang" type of input form.

In past work, various input designs were compared to one another by

designing inputs with the same energy, computed from equation (2-22), and

then comparing the resulting diagonal elements of the dispersion matrix

resulting from each designed input. As seen from figures l(a), l(b), and 1(c),

"bang-bang" input forms with the same energy have different amplitudes

when the total test time is different. A review of equations (2-9) through

(2-18) reveals that the Cramer-Rao bounds from the diagonal of the

dispersion matrix are nonlinear functions of the input time history. The

preceding statement is true even in the case of linear dynamicand output

models, by virtue of equation (2-15). It follows in general that the diagonal

elements of the dispersion matrix are nonlinear functions of the input

amplitude. Thus, the overall performance of the input design is a nonlinear

function of the input amplitude. This fact is highlighted when considering

the different responses of a dynamic system to a high amplitude, short

duration input such as figure l(b), as opposed to a low amplitude, long

duration input like figure 1(c), which have the same energy, computed from

equation (2-21). It is clear that amplitude and test time may be adjusted over

wide ranges without changing the input energy, while at the same time
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drastically changing the system responses on which the merit of an input

design is based. The diagonal elements of the dispersion matrix (ak from

equation (2-17)) are the "bottom line", so to speak, when comparing various

input designs for parameter estimation experiments. The above

considerations raise questions regarding the validity of any previous

comparisons done among input forms where only the input energy was kept

constant. This type of comparison has been done routinely in the

literature [2] [41 [6] [7] [9] [12].

Several interrelated attributes characterize an input design. This

renders the task of equitable comparison among various input designs

problematic. The above discussion concerning figure 1 pointed up the

relationship between input amplitude, input energy, and total test time. In

light of that discussion, the actual energy constraint on the input form is a

composite result of the practical constraints on the input amplitude, the

control system dynamics, and the flight test time. Thus, if one assumes the

viewpoint that the flight test time should be minimized, there is no way to

specify a priori what the value of this input energy constraint should be.

Even with the test time and input amplitude fixed, control system dynamics

can have a significant impact on the value of the input energy, so that it is

still difficult to specify the value of the input energy constraint E in equation

(2-21), a priori.

In general, the input form of figure l(b) is often more effective in the

sense of achieving specific Cramer-Rao bound goals in minimum time,

compared to the input form in figure 1(c). This is the result of a more nearly

impulsive input to the dynamic system in figure l(b), even though the input

energy is identical to that in figure 1(c). Thus there exists an interplay

between allowable amplitude and required test time for given Cramer-Rao

bound goals -- higher amplitudes result in shorter test times and lower

amplitudes result in longer test times. For fixed time problems, higher input

amplitude constraints are associated with potentially lower Cramer-Rao

bounds for the same flight test time.

There are further interrelations. Assume now that a fixed output

amplitude constraint is imposed, and consider the frequency of the input

design in figure l(a). In order to satisfy the fixed output amplitude constraint,

the allowable input amplitude is related to the frequency of the input signal.

For example, a low frequency input will require a relatively low amplitude so
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that the resulting system output response will remain inside the fixed output

amplitude constraint. Higher input frequencies would allow larger input

amplitudes. But the dynamic system output response magnitudes depend on

input frequency regardless of any constraints on the output amplitudes, since

different input frequencies excite different dynamic response modes. This

again impacts the allowable input amplitude as a function of the frequency of

the input signal. But these effects on input amplitude also impact the

required test time for minimum time solutions, or the achievable parameter

accuracy for fixed time solutions, as mentioned above. The interrelations

among input characteristics are seen to be complex, even for the simple

"bang-bang" input forms of figure 1. The complexity arises from the fact that

the dynamic system and output equations are involved, along with the

matrix inversion of equation (2-15). Input forms other than "bang-bang" (e.g.,

sinusoidal) are subject to the same arguments in general; however, the issues

are more difficult to discern.

In addition to the foregoing, there are practical considerations

encountered when attempting to implement an input design in a real flight

test environment. One such consideration is that the allowable frequencies

contained in the input time history will be limited at the high end, due to

limited instrument dynamic response, reduced dynamic system response to

high frequency input, and the high frequency limitations of the pilot and

control system. Another frequently overlooked issue might be called

implementation distortion. This refers to the practical fact that a designed

input may be distorted when actually implemented, owing to the limited

capabilities of the pilot, or to control system dynamics, such as lag and

hysteresis. As might be expected, some input designs are less susceptible than

others to these practical difficulties. Accounting for these difficulties during

the problem formulation can improve the input design. The optimal input

design procedure described in the next chapter successfully addresses these

and other constraint issues.

Previous studies of optimal input design for aircraft parameter

estimation treated the topic of output constraints superficially. In some cases,

the energy constraint on the input given in equation (2-21) was claimed as an

indirect constraint on the output amplitudes. It has been argued that this type

of indirect constraint on the output is appropriate, due to the gradual

degradation of the descriptive capability of linear models with increasing
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excursions from the trim condition [2]. However, this gradual degradation

cannot be relied on for arbitrary flight conditions. Even if a gradual

degradation could be guaranteed, such an approach cannot precisely limit

output amplitudes, and thus compromises the effectiveness of the input by

possibly not taking full advantage of the system response potential, subject to

the practical limits on the output amplitudes, Typically in past studies, a

design was completed, and the aircraft response was checked after the fact

through simulation to assure that the output amplitudes did not exceed the

threshold values. The direct method of including output amplitude

constraints in the problem formulation has been alluded to in the literature,

but not yet demonstrated, apparently because of the added computational

complexity which would be introduced.

For a real flight test situation, it might be argued that the a priori model

structure and parameter estimates may be an inaccurate description of the

physical system to the extent that any claim to a precise control of the real

output amplitudes is not valid. Still, a precise control on the output

amplitudes for the a priori model provides a tool for conservative design of

the input in terms of maximum output variable excursions, and thus gives

the experiment designer the m_st control possible over the output variable

amplitudes, given the a priori r_odel. With precise control over output

amplitude excursions, any lack of confidence in an a priori model can be

compensated for to a controllable and quantifiable extent by using

conservative output amplitude constraints during the optimal input design.

Since the input design for aircraft parameter estimation experiments

must be done using a priori models and parameter values, it is in fact very

likely that the a priori information does not precisely describe the physical

situation (if this were not the case, motivation for the experiment would be

lost). As a result, a flight test input design which is conservative as far as the

output amplitudes produced, yet still effective relative to information content

in the flight test data, is desirable. The task of keeping the aircraft response

variables within limits is at odds with the objective of exciting aircraft motion

as much as possible in order to obtain accurate parameter estimates.

Including the output amplitude constraints directly in the input design

problem formulation makes it possible to satisfy the output constraints while

maximizing the information content in the data. This capability for

conservative input design can help avoid ad hoc flight test procedure changes
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during flight test operations, and also cut down on flight time requirements

by assuring that data from flight test maneuvers can be analyzed using the

same model structure used to design the input. For the case of multiple input

design with higher order models, the direct inclusion of output constraints

into the input design problem formulation is critical for the proper solution

of the problem. The importance of output amplitude constraints to the

proper design of the optimal input for parameter estimation experiments

requires that these constraints be included as part of the problem formulation

(equation (2-6)).

In the present work, the admissible control set was comprised of square

wave inputs. Square wave inputs are defined as controls whose amplitudes

at any time are either full positive, full negative, or zero, so that the

admissible control set, Uj, for the jth component of the m-dimensional u

vector is given by

Uj {l= +laj, 0 -laj } (2-25)

where _j is the jth input amplitude constraint, and the jth component of the

u(t) vector, uj(t), must take one of the values of Uj at any time,

Uj (t) _ Uj , j = 1,2,...,m , t _ [0,T] (2-26)

With each of the m components of the control vector able to assume

any of three distinct values, it follows that the admissible control set, U, for

the m-dimensional control vector, u, contains 3 m distinct members,

U={wI,w2,...,w3 =} (2-27)

where Wl, w2, etc., are distinct m-dimensional control vectors. The control

vector, u, must be equal to one of the members of the admissible control set

for square wave inputs at any time,

u(t) aU , te [0,T] (2-28)
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TItLe control vector u(t) represents perturbations about the input

required for the nominal or trim condition at the start of the flight test. Thus

the (generally nonzero) input associated with the nominal or trim condition

is treated as zero deflection for the parameter estimation input. Limiting the

possibilWes for the input form is useful in the selection of the optimal input

because it is easier to select the best input from the lot when the lot becomes

smaller. The importance of this restriction on the input form will be made

clearer in chapter III when the problem solution is described in detail.

There are several reasons for the rather severe restriction described

above concerning the allowable form of the optimal input for parameter

estimation experiments. First, in cases where a human pilot implements the

designed inputs, the square wave input was considered to have the highest

repeatability and lowest potential for implementation distortion. This point

is of course rendered moot in the event that the designed inputs are

implemented by an automatic control system. Still, the simplicity of the

square wave input form makes it easier to account for control system

dynamics such as lag and hysteresis, using the solution method described in

the next chapter. Such control system characteristics are present regardless of

whether a machine or a human is at the controls.

Careful reading of the references suggests the use of a simple square

wave input for aircraft parameter estimation experiments. Chen [9] and

Reid [3] showed that the minimum flight test time for a simplified problem

using a matrix norm of the information matrix as the cost function results in

a "bang-bang" optimal control. Mulder [2] and Plaetschke and Schulz [7]

evaluated several different input designs in flight, and found that a type of

square wave input, the so-called "3211" input (see figure 2), was arguably the

best performer overall, although this was not claimed by any of the authors.

Gupta and Hall [4] used techniques developed by Mehra [6] to design an

optimal input based on a scalar norm of the information matrix. As part of

that study, the designed input was approximated by a square wave in order to

make the input easier to implement. The authors compared the performance

of the optimal input to its square wave approximation through simulation

and found that the square wave approximation actually produced lower

standard errors for some of the model parameters. Consideration of these

results weighed heavily in the decision to restrict the input forms to square

waves.
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High information content in the data from a flight test is achieved by

the use of abrupt, sharp-cornered inputs, since the frequency content for this

type of input has a broad range, and thus is good for exciting the various

modes of the aircraft response. These response modes have differing

frequencies, which of course are not precisely known in the case of flight

testing for the purpose of parameter estimation. Inputs comprised of

frequencies covering a broad range are therefore superior to inputs with a

more limited frequency content, such as a sinusoid. The input design, which

necessarily is based on a priori models and parameter values, may not include

exactly the proper frequencies to properly excite the response modes of the

real physical system. Use of wide frequency band signals, such as square

waves, is a small hedge against this problem. Interesting experimental data

related to this issue has been presented by Mulder [2].

Finally, the restriction on the form of the input is advantageous in the

solution algorithm used to compute the optimal input in this study. This

point will become clear in the next section, which is concerned with the

solution method.
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Chapter IIl - Solution Methodology

The optimal input design problem, as formulated in the preceding

chapter, was solved using the principles of dynamic programming [10] [11]. A

brief gew'ral description of dynamic programming, as applied in this work, is

included as Appendix B. In the form of dynamic programming used here, the

outputs, sensitivities, and optimality criterion associated with each possible

control at each time step are computed, followed by an efficient and

sequential solution of the resulting high order combinatorial problem. In

this way, the optimal input sequence, in terms of the lowest value of a chosen

optimality criterion, can be found for any time period.

There are considerations particular to optimal input design for aircraft

parameter estimation which make a solution algorithm based on dynamic

programming principles advantageous. These considerations will be

highlighted in the course of the description of the solution algorithm, which

follows.

Equation (2-6) of Chapter II states that selected model output

amplitudes are to be constrained within specified limits. For purposes of

illustration, assume that only two such outputs, Yl and Y2, need to be

constrained. The allowable output space at any given time then may be

represented by a plane region whose borders correspond to the upper and

lower amplitude constraints for Yl and y2, see figure 3. The plane region is

divided into discrete output space boxes. Time is also divided into discrete

steps called stages. The time length of one stage is represented by Tstage, and is

assumed constant. The constrained outputs of the system are examined at

every discrete time, separated by the time T_tage. Feasible continuous outputs

at any time must be contained in one of the discrete output space boxes for

that time. For the aircraft parameter estimation experiment, the initial

condition of the constrained outputs is zero, since it is assumed that the

model was derived relative to some specified condition. The initial output

falls within a specific box in the discretized output space at the initial time.

The fact that the initial condition for the problem is known means that only

one sweep through time will be necessary for the solution. Assume that a

scalar input is to be designed, so that the only input possibilities are full

positive amplitude, full negative amplitude, and zero, for a square wave

input form. Starting at the initial condition box in discretized output space,
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all possible controls are applied over the time length Tstase, and the

consequences of each control possibility are computed. The consequences of

each candidate control include the states, outputs, sensitivities, and cost

associated with each control, deferring for the moment the question of how

the cost is computed. Fourth order Runge-Kutta numerical integration of the

equations of motion (2-1) and the state sensitivity equations (2-12) over the

time step Tstase, along with calculation of the outputs from equation (2-2) and

the output sensitivities from equations (2-11), is required to determine the

consequences of each control possibility. Over the period of time Tstage, the

input is constant and equal to one of the possibilities given by equations (2-25)

through (2-28) with m=l. This amounts to allowing scalar square wave input

sequences only. The resulting output values fall within one of the discrete

output space boxes associated with the next stage, Tstase later. The collection

of all boxes which have been reached at the next time step might be called the

reachable output space at that time. Using the state and state sensitivities of

the system corresponding to each box in reachable output space at the next

time stage as the new initial conditions, the process of computing the states,

outputs, sensitivities, and cost associated with all possible controls is repeated

to find the reachable output space for the following stage. If any of the

possible controls applied over the time Tstage takes an output outside the

feasible output space for the next stage, that control is excluded from

consideration as part of the optimal input sequence. For figure 3, this means

any control which produces an output beyond the output space plane region

boundaries at any time would be discarded. This implements the output

amplitude constraints in a simple and straightforward way. At this point it is

easy to see the importance of keeping the number of possible controls to a

minimum, since the consequences of each possible control must be computed

for each box in reachable output space at each stage.

For multiple input designs, there are simply more control input

possibilities in the admissible control set, U, whose consequences must be

computed for each box in reachable output space at each discrete time stage.

For m inputs, there would be 3 m different control possibilities. The base three

results from there being three choices for the value of each input vector

component (full positive amplitude, full negative amplitude, and zero), and

the exponent m is the number of elements in the control vector.

=
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At each discrete time stage, the reachable output space is computed as

the result of all possible controls starting at the reachable output space boxes

found for the preceding time stage. After the computations proceed for

several stages, some of the boxes in the reachable output space for a particular

stage can be reached from more than one reachable output space box for the

preceding stage, perhaps using different controls. Essentially, this means that

more than one input sequence can be used to reach the same box in output

space at a particular time. The discretization of the constrained output space

was clone to produce this occurrence. There must be some criterion for

deciding which of the input sequences should be preferred to arrive at that

box in output space at that time. This criterion is the minimization of a

chosen function, which will be referred to as the value function, in keeping

with standard dynamic programming terminology. Minimization of the

value function is the optimality criterion for the optimal input design.

For the minimum time problem, the objective of the input design is to

reach specific goals for the Cramer-Rao bounds in the minimum time.

Denote the goal for the Cramer-Rao bound of the k th parameter by _k, and

the actual value of the Cramer-Rao bound obtained using a candidate input

sequence up to the i th time stage, by c_ki for the k th parameter, k=l, 2, ..., p.

Both aki and _k are positive values. Now define the value function as the

square of the shortest Euclidean distance between the point in the p-

dimensional space whose coordinates are the Cramer-Rao bounds at a given

time, oki, and the p-dimensional parallelepiped on and within which all the

goals for Cramer-Rao bounds are achieved. The value function at the i th

time stage, _i(O), for a candidate input sequence, O, is given by

)2i(O) =k-l _ki- _k V k such that _k i> _k
(3-1)

where the c_ki depend on the a priori model and the candidate input sequence

O up to the ith time stage, and _k are constant Cramer-Rao bound goals chosen

a priori.

Figure 4 depicts the value function calculation for the simple case of

two model parameters (p=2). Cases A, B, and C in the figure represent three

cases where a nonzero value function is possible for this simple situation.
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The location of points A, B, and C would be determined by the computed

Cramer-Rao bounds associated with, say, three different inputs, or perhaps

the same input sequence at three different times.

In order to use the value function given in (3-1), there must be some

way to compute the Cramer-Rao bounds, aki, sequentially. This is in contrast

to the usual batch calculation of the dispersion matrix implied by equation

(2-15). A sequential dispersion matrix, Di, calculated at the ith time stage,

would give aki values as the square root of its diagonal elements (see equation

(2-17)). D!would include information from a simulated experiment

conducted with a candidate input sequence and the a priori model, up to the

i th time stage.

The method for this sequential calculation is due to Chen [9], who

applied the matrix inversion lemma [13] to equation (2-15) to produce a

sequential update expression for the dispersion matrix in the form:

DI+ 1 3y(i+1) Di + R
30 30

-1

3y(i+l)30 ) Di
(3-2)

Di+l is a symmetric matrix, since D must be symmetric (see equation (2-15)).

Elements of the sensitivity matrix in (3-2) are obtained by solving the state

sensitivity equations, (2-12), and the dynamic system equations, (2-1), and

then using the output sensitivity equations, (2-11).

The dispersion matrix update in (3-2) produces values of cki+l for

k=l,2,...,p, which give the coordinates of a point in p-dimensional space

corresponding to a particular control sequence at the (i+1) th time stage. This

sequential calculation allows the association of a scalar value function (from

(3-1)) with each candidate input sequence in a manner which is stepwise in

time.

From numerical experimentation, it was found that the initial

dispersion matrix, Di, could be made equal to a p-dimensional diagonal

matrix having large diagonal elements, with no effect on the calculation of

Di+! past the first sequential update. Thus, the algorithm initializes Dl as

DI = 10,000.0 ( Ip ) (3-3)

26



where Ip is a pxp identity matrix.

Each box in the reachable output space at each time stage has a value

function, _Pi(O), associated with it, calculated from equation (3-1). As

mentioned above, there may be more than one input sequence which results

in output response values being contained within a single box in discretized

output space. The input sequence which results in the lowest value of _i(O)

is saved and associated with that particular box, along with the value of _i(O).

Inferior input sequences with higher _Pi(O) values, which reach the same box

in output space, are discarded. This sequential selective process is the

manifestation of Bellman's principle of optimality [10] [11], and yields the

global optimal input for any reachable output space box at any time stage in

terms of the lowest value function. If each reachable discrete output space box

is denoted by j, for j=l,2,..i,ny(i), where ny(i) is the total number of reachable

discrete output space boxes at time stage i, then the lowest value function to

be associated with each reachable discrete output space box, j, at the i th time

stage is denoted by _i(O*j), and given by

tPi(O*j) = min [tlJi(OJ ) ]

Oje U

j=l,2,...,ny(i)

(3-4)

where the Oj input sequence up to the ith stage produces output in the jth

reachable output space box, and the notation Oj_ U implies that the input

sequence Oj is comprised of elements of U which have remained constant for

a period of at least one stage time of length Tstage- The minimization in

equation (3-4) is done by comparing all _i(Oj) for a given i and j, and selecting

the minimum value. This minimization approach is feasible because the

number of _i(Oj) for any given i and j is small, due to the discretization of the

continuous physical problem.

The fact that this solution process gives the input sequence with the

global minimum value function for each reachable output space box at each

time can be understood by realizing that this optimality is imposed

sequentially from the initial time, and covers all possible (reachable) output

space, subject to the chosen output space discretization. This latter condition

means that all continuous outputs inside a discrete output space box are
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considered the same point in output space. In this way, all of reachable

output space at each time is associated with an input sequence O*j which

reaches that output space at that time with a minimum value function, with

the understanding that all continuous output space inside a discrete output

space box is treated as the same output.

For the minimum time problem, a zero value of _Pi(O*j) corresponds to

the achievement of all Cramer-Rao bound goals, since the k th term in the

value function summation in equation (3-1) is included only when C_ki > _k.

This avoids imposing a penalty for _ki _< _k. Thus, to find the minimum time

to attain specified Cramer-Rao bound goals, the calculations are stopped at the

first time stage where any box, j, in reachable output space is associated with a

zero value function, _Pi(O*j). The first time stage with zero _i(O*j) gives the

value of the minimum time. The input sequence required to reach that box

in reachable output space is the optimal control. Thus, for the minimum

time problem, the cost, J, is

J = T = (Tstag,,) i when aki < _k 'V' k=l,2,...,p (3-5)

/

./

where Tstage is the constant stage time. The minimum value of i which

satisfies equation (3-5) is called nmax, and this integer corresponds to the

minimum test time required to achieve all Cramer-Rao bound goals. It

follows from equations (3-1) and (3-5) that the integer nmax is the index of the

first stage which has _i(O*j) = 0 for some j_ (1,2,...,ny(i)}. Since LFi(O*j) should

be a positive monotonically decreasing function as time goes on (and more

information is added), the search for a zero value of _Pi(O*j) can be made by

finding the smallest value of _Fi(O*j) searching over all values of j at a given

time stage i. This search will give the optimal value function attainable at

any location in feasible output space at the i th time stage. The optimal value

function at stage i, _Pi*, is given by

_i* = rmn [_Pi(O*j)]

j_ {1,2,...,n y(i)}
(3-6)
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So that

nmax=i when _i*= 0 (3-7)

The opti,-_al input sequence up to the i th stage is given by O*j*(i), where j*(i)

is the index j of the optimal value function found from equation (3-6). Then

_Pi* = _Pi(O*j*(i)) (3-8)

and for i=nmax,

tl/nmax* = I{anmax(O*j*(nmax)) (3-9)

with nmax from equation (3-7) in conjunction with equation (3-6).

For the fixed time problem, the solution method is the same, except

that the target values for all the Cramer-Rao bounds are set to zero, i.e.,

_k = 0 , k = 1,2,...,p (3-10)

and the cost is simply equal to the value function from equation (3-1), with all

_k = 0, i.e.,

J=_Ji(o) = '_ (_3ki) 2
k=! (3-11)

The optimal value function, Wi*, for each time stage, i, is determined in the

same way as for the minimum time problem, that is, by equations (3-4) and

(3-6). For the fixed time problem, the optimization is stopped after a fixed

number of time stages, given by nmax, where

T

nmax - T
stage (3-12)

Here, T is the fixed test time chosen a priori, and Tstag e is the constant value
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of the stage time. The optimization is finished when the number of stages, i,

reaches nmax, computed from equation (3-12),

i=n
T

w

max Tstag e (3-13)

Equations (3-8) and (3-9) for the optimal input sequence hold exactly as before,

with nraax now given by equation (3-12).

Equations (3-10) and (3-11) implement an implicit weighting on the

parameter accuracies, in that the model parameters with larger absolute

values tend to have larger Cramer-Rao bounds (_ki associated with them,

which means that their contribution to the cost in equation (3-11) is larger. In

fact, _ fixed test time formulation must address the problem of how to

weight the relative importance of each parameter accuracy. The scheme used

here was found to be most effective in the sense of achieving the lowest

Cramer-Rao bounds, because although the optimizer pays more attention to

reducing the larger Cramer-Rao bounds, these particular Cramer-Rao bounds

also have the most potential for reduction, because the parameters associated

with them are large. Large parameters in the model significantly affect the

model output, which is equivalent to saying the sensitivity matrix elements

associated with these parameters are large. The result is that the complete

absence of weighting factors implied by equations (3-10) and (3-11) was found

to be the most effective parameter weighting scheme for the fixed time

problem.

A fact glossed over until now is that in order to compute the chosen

value function in (3-1) or (3-11) recursively, the state sensitivity equations

(2-12) must be integrated numerically in time. These equations and the

output sensitivity equations (2-11) require that the dynamic system equations

(2-1) also be solved, since the state variables appear in the sensitivity

equations. At each discrete time stage, a different input sequence, Oj*, will be

associated with the jth reachable output space box. Thus each reachable box in

output space has a different state and state sensitivity time history associated

with it. In addition, the p(p+l)/2 unique elements of a sequentially updated

symmetric dispersion matrix, Di, will also be associated with each reachable

box in output space, since the dispersion matrix is a function of the input
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sequence through the sensitivities and the system dynamic equations. These

considerations point toward a large memory requirement for the solution of

the problem.

However, there are aspects of the problem formulation which rescue

what would otherwise be a bleak situation in terms of memory requirements.

Since the dynamic system model is assumed to be derived relative to some

specified condition, the initial conditions on the state and output variables

are assumed known and constant for the experiment. The problem of

designing inputs for a parameter estimation experiment differs from a

general optimal control problem in that a "one time" input sequence (as

opposed to a feedback control) is desired for only one initial condition. Thus,

only one optimal input sequence beginning at the initial time must be saved

for each reachable box in output space at each stage, and the propagation of

the dynamic system equations, state sensitivity equations, and the unique

elements of the dispersion matrix for each reachable box in output space can

be done from stage to stage. Stated another way, the optimal input sequence

for all time since the initial time must be saved for any particular reachable

box in output space at any stage, but the time histories of the states, state

sensitivities, and unique dispersion matrix elements can be discarded for all

stages except the immediately preceding stage, since only these immediately

preceding values are necessary to propagate the solution. The outputs and

output sensitivities can be computed from the states and state sensitivities,

and known quantities (see equations (2-2) and (2-11), respectively). Therefore,

the variables that must be saved for each reachable box in output space for the

current (i th) stage _ are given in the top part of Table 1. Since only a few

input choices are allowed, each input choice can be associated with an integer

index, so that the optimal input sequence, flj*, saved for each reachable box in

output space at any time stage is a string of integers, one integer for each stage

from the initial time to the current time. This is shown at the bottom of

Table 1, where array IOPTU holds the integer strings representing flj* for each

reachable output space box at each time stage. After the input design is

completed, and the optimal input sequence determined, the optimal input

sequence can be replayed using a numerical integration of the dynamic

system equations along with the control system dynamics and the output

equations, in order to reconstruct the state and output time histories
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associated with the optimal input. This scheme keeps the memory

requirement small.

Several special features were incorporated into the basic algorithm

described above in order to improve the computed solution. These features

are outlined below.

Selection of the outp.u.t, space discretization The chosen size of the output

space boxes is important to the optimal input solution. The trade-off is one of

increased memory and computation time requirements for more output

space boxes versus a compromise of the optimal solution for too few boxes.

The number of boxes to be used may be determined by solving the problem

repeatedly with an increasingly finer grid for the constrained output

variables. When the optimal input design is unchanged in going to a finer

grid, the process may be stopped, and the last output space discretization used.

The algorithm described in the present work has been designed to facilitate

this type of calculation by allowing the number of divisions covering the

amplitude range for each constrained output to be specified as input to the

program. Combining this information with the output amplitude constraint

values (rlk in equation (2-6)), which must also be input to the program,

completely specifies the discretization of the output space. If the number of

discrete output space boxes for constrained output yk(t) is denoted by nyk, the

length of the side of the discrete output space box associated with constrained

output yk(t) is given by ¢k,

211k
Ck -

ny k (3-14)

Then, the dynamic programming grid for constrained outputs yk(t),

k_ {1,2,...,q}, is set up by computing the boundary values for the discrete

output space grid. These boundary values are stored in array YLIM, which is

computed by

YLIM(k,j) = yk(O) - qk + (j-l) Ck , j=l,2,...,(nyk+l) , k_ {1,2,...,q} (3-15)
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where yk(O) is the known initial value of the k th constrained output, and only

the indices corresponding to constrained outputs are used for k. Equations

(3-14) and (3-15) specify the dynamic programming grid boundaries for

discrete constrained output space.

Selec_iQn of the stage time and. input frequency spectrum Since control can

change only at the discrete time points separated by Tstage, and only full

positive, full negative, or zero input amplitudes are allowed on each control

vector component, it follows that the available input frequency spectrum is

influenced by the choice of Tstage • In particular, if the high frequency

components associated with the sharp corners of a square wave are

disregarded, the larger the value of Tstage, the more limited the input

frequency spectrum palette. Very small values for Tstage give the freedom to

change the control at more closely spaced times, due to the tight spacing of the

stages. In this case, a wider, more nearly continuous frequency spectrum is

available to the input design algorithm. A large Tstage constrains control

changes to be more widely separated in time, corresponding to lower, more

widely spaced frequencies in the input. The trade'off is that smaller values of

Tsta8e mean more stages for a given time, which means a larger memory

requirement, versus the better input frequency resolution available with

smaller values of Tstage.

The algorithm automatically computes the stage time. Several issues

must be weighed to choose the stage time appropriately. On one hand, a

small stage time is desirable in order to admit a larger, more nearly

continuous field of candidate input frequencies. However, limiting the stage

time value on the low end is the memory capacity, particularly for large test

times. Even more limiting on the low end for the value of the stage time is

what might be called discretization error. If the stage time is very small for a

fixed control amplitude, it may happen that application of all control

possibilities over one stage time produces output which remains inside the

originating box in output space, regardless of the control applied. This

happens most apparently at the outset of a single input design, when full

positive and full negative controls produce equal value functions. In effect,

the algorithm would discard' the second of the applied controls (full positive

or full negative) as inferior, and in so doing would discard half the

subsequent decision tree, and thus seriously compromise the optimal
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solution. It is therefore essential that at least one nonzero control application

at the outset produce output which travels outside the originating box in

output space, and this criterion is used by the algorithm to determine the

stage time. For the chosen output space discretization, the equations of

motion are integrated from the initial conditions until at least one output

crosses a box boundary in discretized output space. The time for this

occurrence is designated as the stage time, and calculations proceed as usual.

Assume that the initial value of the k th constrained output is between

YLIM(k,jO and YLIM(k,j,), that is,

YLIM(k,ju) < yk(0) < YLIM(k,j,) , k_ {1,2,...,q} (3-16)

Now, the dynamic system equations (2-1) are integrated forward in time using

the first nonzero input from equation (2-27), and the resulting outputs are

computed from (2-2) until

yk(t) < YLIM(k,jL) OR yk(t) > YLIM(k,jH) , ka {1,2,...,q} (3-17)

The minimum time for the condition in equation (3-17) to be satisfied for any

constrained Output, k, is designated file stage time, Tstage- So ihat

TStase = minimum t satisfying (3-17) (3-18)

With this feature, the minimum stage time possible (equivalently, the widest

and most nearly continuous input frequency spectrum) is used for a given

selected output space discretization.

Practical upper.limit on input frequency If the optimal input design is to be

implemented by a pilot, an upper limit exists for the input frequencies which

can be implemented, due to human physiology. The algorithm allows

specification of this upper limit on frequency in the time domain by

providing the means to specify the minimum time for the spacing between

control changes. This time is an input to the program, and is denoted tmp.
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The program converts this time into an equivalent number of stages, nmp, by

the relation

nmp--- trap +1
Tstage (3-19)

where nmp is an integer, and one count is added to offset the truncation which

occurs when assigning a real quotient to an integer variable. The top of Table

1 shows that array IREPU keeps track of important control parameters,

including the number of times the last control was applied consecutively for

each reachable output space box at the current time stage. To implement the

high frequency limit in the time domain, the program simply limits the

admissible control set for nmp stages after a control switch to only the last

control, i.e.,

UL(j) = { WL(j) } , L(j)_ {1,2,...,3 m} (3-20)

where L(j) is the integer index for the last control used to reach the discrete

output space box, j, at the current time stage, which is the initial condition for

the trial of control possibilities. If nt,(j) represents the number of stages control

wt,(l) has been applied consecutively up to the current stage for the jth

discrete output space box, the admissible control set is given by (3-20) as long

as

nLo) < nmp , j_{1,2,...,ny(i)} (3-21)

where i is the stage index, and ny(i) is the number of reachable output space

boxes for the ith stage. When equation (3-21) no longer holds, the admissible

control set reverts to the usual set given in equation (2-27). In this way, an

optimal input can be designed including the practical constraint imposed by

the speed of reliable human pilot inputs. A similar limitation may be desired

when using automatic implementation of the optimal input design for a

variety of other reasons, such as instrumentation dynamic response, known

control system dynamics, modelling errors related to frequency, or avoiding

resonance with aircraft structural modes.
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Control system dynamics A basic objection to a true square wave input

design is that although the simplicity of its implementation is often touted, in

practice, the implementation of a true square wave is impossible, due to the

requirement for an infinite control surface displacement rate, see figures 1

and 2. In order to design a truly practical optimal input, the capacity to

include control system dynamics was built into the algorithm. The examples

in chapter V employ a simple first order lag on the control surface deflections,

though other more complicated dynamics could be incorporated. Referring

again to the top of Table 1, the input amplitudes resulting from the

application of the input sequence Oj*, including control system dynamics, are

saved for each reachable output space box of the current stage. These

amplitudes represent the initial control amplitudes for the computations

over the next time period of length Tstage. The control amplitudes

represented by the components of each member of U in equation (2-27) can be

thought of as commanded values for the control amplitudes. A scalar

function of time, called AMPLAG(t), represents the control system dynamics.

Assuming w! is the control possibility being examined, and denoting the

saved input amplitude vector for the current stage from array UASTR (see

Table 1) by Uold, the input vector, u(t), is given by

u(t) = (wl - Uold ).AMPLAG(t - (i-1)Tstage) + Uoid (3-22)

For a first order lag with time constant z, the AMPLAG(t) function is

AMPLAG(t) = 1 - e -t/z (3-23)

The control surface dynamics are included directly in the calculation of the

value function associated with each control applied over any stage, and are

not applied after the fact to make the implementation of the input design

practical. This procedure preserves the optimality of the designed input; the

input simply has added practical constraints imposed by the dynamics of the

control system.

Specification of i_nitial and final input amplitudes As mentioned previously,

the input design for aircraft parameter estimation experiments is essentially

an input time history superimposed on trim or nominal input amplitudes.
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Thus, a desirable feature of an input time history designed for aircraft

parameter estimation is that the initial and final input amplitude values be

zero. This enhances the safety of the flight test by helping the pilot recover

the aircraft from the maneuver. It makes sense to include the requirement

that the parameter estimation input begin and end with zero amplitude as an

integral part of the optimal input design problem formulation. The

algorithm in the present work is capable of implementing this requirement.

The forward time evolution is continued until there is a box in output space

which satisfies the conditions of optimality given previously, but also has

been reached by application of the zero control vector. The time that the final

control should be zero is an input to the program, called trc. This time is

converted to a number of stages, nfc, by

tfc

n fc - Tstag c
+1

(3-24)

where the same comments apply here as to equation (3-19) above. Now in

additionto the stopping criterion for the minimum time problem (equation

(3-7)) and the fixed time problem (equation (3-13)), another criterion is added

for an optimal input ending with zero control deflections. Denote the index

for the zero control vector in U by 10,10_ {1,2,...,3m}, and the control index of

the last control for the jth discrete output space box at the current stage by L(j).

The number of times this last control was applied is nL(j). The quantities L(j)

and nL(j) are saved for the current stage (see top of Table 1). Then the

additional stopping criterion is

L(j) = 10 AND hE0) > nfc , j_{1,2,...,ny(i)} (3-25)

where i is the stage index, and ny(i) is the number of reachable output space

boxes for the i th stage. The first stage where this modified stopping criterion

is satisfied is the end of the optimization, and all else remains the same. Due

to the included control system dynamics, several time stages with a zero

control may be required for the input amplitudes to actually return to zero.

All the examples presented in the sequel include this requirement as part of

the optimal input design.
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Automatic adjustment .of input amplitu_ie Appropriate values for output

amplitude constraints are easily specified a priori from physical

considerations related to the safety of the aircraft and pilot, and the validity of

the model. Input amplitude constraint values are not as easily chosen, since

they may be strongly related to the imposed output amplitude constraints.

For the aircraft parameter estimation problem, the starting point for input

amplitude constraint values are the physical limits on control deflection, as

implemented by mechanical stops, flight control software limiters, or linear

control effectiveness. In general, higher input amplitudes give more system

excitation per unit time, so that the accuracy requirements for the parameter

estimates are achieved in a shorter time or more parameter accuracy is

available for a fixed time. Thus, if no output amplitude constraints were

imposed, the maximum input amplitude possible would be preferred. When

output constraints are imposed, as is commonly the case, it may occur that the

input amplitude is so large that feasible outputs are produced only when the

controls are applied at the initial time. For example, assume that all controls

applied at the second stage, starting from an output space box different from

the initial box, produce output Which travels ou_icie feasible output space. In

this case, all controls are disallowed, there are no reachable output space boxes

for the next stage, and no optimal control exists. This problem is exacerbatedl

by the maximum input frequency limit feature described above, since that _

feature specifies a minimum pulse width for each control. The algorithm has

the capability to recognize this problem. This is done by setting a flag when

the only feasible outputs computed for any stage beyond the second stage

originate from the initial output condition. Corrective action consists of

decreasing the input amplitude constraint by an amount which can be

specified, and restarting the algorithm. Denote the input amplitude

decrements by 8_j for j=l,2,...,m. These input amplitude decrements are

positive-valued inputs to the program. Then the input amplitude constraints

are modified by

_j = _j- 8_j , j=l,2,...,m (3-26)
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At this point, the algorithm is restarted. This iterative procedure ensures that

the maximum possible input amplitude is used for the input design,

consistent with the imposed output amplitude constraints. The input

amplitudes are determined directly and iteratively as a function of imposed

constraints on the output amplitudes and the practical limits for the

maximum input amplitudes, all of these being easily specified in practice.

Another occurrence which requires equation (3-26) can be called a monotonic

optimal value function violation. This situation arises when the optimal

value function for the i th stage, q_i* from equation (3-6), is substantially larger

than tIJi_l*, the optimal value function from the preceding stage. In this case,

the imposed output amplitude constraints are severely compromising the

optimal solution. The problem is also addressed by reducing the input

amplitude constraint using equation (3-26), and restarting the algorithm.

Multiple input switching Multiple input design for aircraft parameter

estimation experiments presents another practical difficulty, namely the

coordination of the controls by a human pilot. In particular, a pilot may be

unable to implement an input design where more than one input is changing

at the same time in a relatively complicated fashion. To combat this problem,

the optimal input design algorithm provides the capability to specify time

periods where only one control will be allowed to vary from zero. This

amounts to additional restrictions on the allowable controls at any given time

stage and is an additional constraint on the form of the input. Assume that

the control vector, u, has only two components (m=2). The time length

during which only a single control vector component is allowed to move is

an input to the program, called tsw. This time is converted to an equivalent

number of stages in the manner described previously,

tsw

n sw - Tsmg e
+l

(3-27)

Now denote the subset of the admissible control set U which moves only one

control vector component, including the zero control vector, by Ul. Then,

U D U! (3-28)
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where in the case under consideration (m=2), U has 32 elements, and

(3-29)

U1 represents the admissible control set for square wave inputs moving only

the first component of the control vector. As long as

i _<nsw (3-30)

where i is the stage counter, then the admissible control set is given by U1.

When i > nsw, the admissible control set changes to U2, where

+It 0 -It 2 (3-31)

,, v L

The extension to more than two CompOnentS in the control Vector is

straightforward. The control switching time length, tsw, is constant for all

control vector components, and the centroi sequencing is fixed, in the interest

of simplicity. Modifications could easily be made in the direction of more

sophistication. This additional constraint on the form of the optimal input

(or any additional input form constraint, for that matter) actually decreases

the computation time for the optimal input design, since fewer control

choices must be considered for any reachable output space box at any time

stage.
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Chapter IV - Summary o 1L__!g_ithm Characteristic&

The following list with brief descriptions summarizes the features of

the algorithm developed in this work for designing optimal inputs for aircraft

parameter estimation.

Global Qptimum solution - Expensive flight test time is minimized by

formulating the problem as a minimum time problem. The global

minimum time solution is the input sequence for the shortest flight test

required to reach target values for the Cramer-Rao bounds. The global

optimum fixed time input design is achieved by setting target values for the

Cramer-Rao bounds to zero, and choosing the input sequence associated With

the lowest Cramer-Rao bounds at the final time. Both solutions are globally

optimal by virtue of Bellman's principle of optimality [10] [11], which is the

modus operandi of the algorithm. As with any other optimal solution, the

optimality is meaningful only in the context of the problem formulation,

which was given in Chapter II.

Multiple input design capability - Multiple input problems increase the

number of input choices whose consequences must be evaluated for each

reachable output space box at each time stage. The result is an increase in the

computation time required to solve the optimal input problem. This is to be

expected, since the multiple input problem is inherently more complicated.

The solution algorithm has been formulated So that the additional memory

required to solve a multiple input problem is small.

Closed loop model capability- The program Wasdesigned in a modular

fashion, so that various linear system dynamic and output models could be

used. The algorithm can accommodate a model structure for linear closed

loop models, thus allowing the design of optimai _inputs for open loop

airframe parameters when only closed loop data are available.

Practically achievable input design - Constraints on the input form were

incorporated to alleviate repeatability and coordination problems which

might be encountered when a human pilot is used to implement flight test

inputs, particularly for a multiple input design. In addition, the algorithm
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in,:_ades control system dynamics directly in the calculation of the optimal

inpu_ design. This addresses the problem of implementation distortion,

which would otherwise degrade the efficacy of the designed input.

Direct imvlementation of_utput amplitude constraints - Inclusion of the

output amplitude constraints in the problem formulation results in an input

design which excites the system response modes to the fullest extent possible,

but no further. This characteristic is important for a optimal input design in

the practical sense.

Input frequency, chosen in the time domain - Control changes may occur only

at discrete time points which are separated by one stage time. For square

wave input forms, this means that the input frequency spectrum will be

chosen by the determination of the optimal time for the input to switch.

These switching times for the input will be optimal to within plus or minus

one stage time. The algorithm automatically determines the minimum

usable stage time, based on the output space discretization. This ensures that

the widest and most nearly continuous input frequency spectrum is

consideredin the design_ o{ the OPtimal input.. _Practical constraints on the= _,

input frequency spectrum resulting from inherent characteristics of the pilot,

flight test operational procedure, and the control system dynamics are

implemented in the time domain.

Single pass solution - The solution algorithm described here requires no

iterative calculations or special start-up procedures. The optimal input

solution is obtained in a single pass, which marches stepwise forward in time.

When the problem solution is not possible with the specified input and

output constraints, the algorithm decreases the input amplitude and restarts

the solution. However, this iteration is on the proper conditions for the

problem solution, and not on the solution per se.

Wel.!-suited to design studies - The algorithm presented here can be used for a

meaningful trade-off design study of optimal input design for aircraft

parameter estimation. For example, the analyst can easily examine the effect

of changes in measurement noise characteristics, Cramer-Rao bound goals,

input amplitude constraints, output amplitude constraints, or control system
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dynamics in terms of their effect on the required flight test time or achievable

parameter accuracies.

To complete the picture, drawbacks of the algorithm are listed and

described below.

Memory requirement - A requirement for a large amount of memory is

inherent in dynamic programming solutions to optimal control problems.

The originator of the dynamic programming approach, Richard Bellman, has

referred to this problem as " the curse of dimensionality " [10] [11]. In the

present work, the memory requirements were kept to reasonable levels by

taking advantage of characteristics peculiar to the problem of optimal input

design for aircraft parameter estimation. These characteristics are the "one

time" nature of the input design, the fact that the dynamic model was

formulated relative to a specified initial condition, and the limitations which

could be legitimately imposed on the form of the input. For this work,

memory requirements were impacted most significantly by the number of

constrained output variables required, the output space discretization, and the

maximum number of time stages. To a much lesser extent, the model order

and the number of parameters in the model increased memory requirements

as well. While more complex problems will naturally increase memory

requirements, this is not seen as a serious problem for several reasons. First,

the algorithm has been designed with an eye toward minimizing the memory

requirements, in a time when the run-time memory of new computers is

increasing at a rapid pace. In addition, the current version of the program can

handle a sixth order dynamic system model, with twelve model parameters,

two inputs, two constrained outputs, and a maximum of one hundred fifty

time stages, with still some room for expansion. The current capability will

be sufficient for many practical problems of interest.

Run time requirement - The required run time depends mainly on the model

order, the number of model parameters, the output space discretization, and

the number of control choices available for each output space box at each time

stage. To give some idea of the execution time required, using a Digital

Vaxstation II, the open loop single input example presented in this work took

about 3 minutes for a 3.2 second input design.
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Chapter V - Examples

Example 1

The first example was investigated previously by Mehra [5] and

subsequently by Chen [9]. The problem is to design a single input for the

purpose of estimating the parameters contained in an approximate model of

the short period dynamics for an airplane. The model is given by

[i][" 1][°7rz  7M,,Mq q 'lMod_C

(5-1)

where 0_ is the angle of attack, q is the pitch rate, and 8e is the elevator

deflection. The output mode 1 is - -: -

1[_ol
1 0 ][q(t)][y,(t)] =10

[Y2(t)J

The measurement equations are

_i ] :,i

[y_(i)]

[;m:l::] = [ _ 0 ] [Y2(i' j
+ .o,(i)1

_)2(i)J i = 1, 2, ..., N

_!(5_2)

(5-3)

(5-4)

where _)(i) is the i th realization of a zero-mean Gaussian white noise vector

random process with the following measurement noise covariance matrix:

r j2.0 0.0

R= 0.0 1.0 (5-5)
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The a priori values of the model parameters are the true values for the

parameters, given in Table 2. The physical system is the system given above

using the true parameter values from Table 2, which means that there is no

modelling error in the a priori model. For this problem, Mehra [5] used a

fixed time for the flight test data run, and maximized the trace of the

information matrix ( see equation (2-9)), subject to an energy constraint on

the input of the form given in equation (2-21), i.e.:

_0 T_u(t)_2dt
=E

(5-6)

where T=4.0 seconds and E=311. Figure 5 shows the Mehra input design, and

the associated time histories for 0_ and q. The third column of Table 2 gives

the performance of this input design in terms of the Cramer-Rao bounds.

In reference [9], Chen solved the identical problem using the same

energy constraint on the input. Instead of minimizing some scalar norm of

the information matrix, the minimum time required to achieve the

parameter accuracy represented by the Cramer-Rao bounds from the Mehra

input was sought. The procedure used was iterative, and assumed the input

form to be a member of an orthogonal set of Walsh functions, which are

"bang-bang" input forms. The solution obtained was suboptimal, and is

shown in figure 6, with resulting Cramer-Rao bounds given in the fourth

column of Table 2.

The new technique for optimal input design was used to find the

minimum time solution for square wave input forms for the same problem.

Since no energy constraint of the form (5-6) was imposed, the problem was

solved for two cases - once using the maximum input amplitude of the Chen

solution as an input amplitude constraint, and a second time using the

maximum input amplitude of the Mehra solution. The results for the

former case are shown in figure 7, while the results for the latter case are

given in figure 8. Values for the Cramer-Rao bounds for these inputs appear

in columns 5 and 6 of Table 2.

The problem was solved a third time using the technique developed in

the present work. Input amplitude was again constrained to be the same as

the Mehra solution, but this time a first order control system lag was
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included, with time constant equal to 0.1 second. The input design and

output variable time histories are given in figure 9. The resulting Cramer-

Rao bounds for the parameters are given in column 7 of Table 2.

The Cramer-Rao bounds in Table 2 for the input designs of Mehra and

Chen were obtained with the same computing means used to obtain the

Cramer-Rao bounds for the optimal input designs generated by the technique

described in this dissertation. That is, only the form of the input was

borrowed from the works by Mehra and Chen ; the resulting Cramer-Rao

bounds were computed with the same computer and algorithm ( equation (2-

11) and numerical solution of (2-1) and (2-12)). This was done in the interest

of a fair comparison among the input designs.

The input designs associated with the present work included the

stipulations that the input begin and end with zero amplitude, and the

minimum pulse width was set at 0.6 second. In addition, the (z and q output

variables were constrained to + 10 degrees and + 12 degrees per second

respectively, so as to limit output variable excursions to values similar to

those obtained from the Mehra and Chen input designs. The sampling

interval, At, was set at 0.02 second. The goals for the Cramer-Rao bounds

were taken to be the values associated with the Mehra input, from column 3

ofTabie Z Thus' the Objective for the optimal input designs was to attain

these goals in minimum time.

Column 5 of Table 2 shows the results of the present work using the

same input amplitude as for the Chen design. A lower value of total time is

attained by giving up some accuracy on the Z force parameters, while picking

up some additional accuracy on the moment equation parameters. All

Cramer-Rao bounds are lower than the Mehra input values, as required. This

trade-off among the parameter accuracies beneath the goal values in order to

achieve a smaller test time was done implicitly and automatically by the

algorithm, thus obviating the need for parameter weighting and all the ad

hoc procedures that usually accompany it. Maximum output amplitudes

were virtuaiiy the same as for the Chen input design, and lower than those

for the Mehra input design, as required by the output constraints built into

the solution algorithm (see figures 5,6, and 7).

The results in column 6 of Table 2 demonstrate that if the higher

maximum input amplitude of the Mehra design is used as an input

amplitude constraint, the goals for the Cramer-Rao bounds can be achieved in
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an even smaller total time. All Cramer-Rao bounds were below their

respective goal values from the Mehra input in column 3 of 'Table 2. Output

variable amplitudes were again within their constrained ranges, see figure 8.

This case demonstrates some of the points made in chapter II regarding input

characteristics and the appropriate types of constraints for aircraft parameter

estimation experiments.

The effect of including a control system lag on the input design

solution is given in the last column of Table 2. Cramer-Rao bounds were

again less than the goal values from the Mehra input for every parameter, as

required. These accuracies were virtually the same as in column 6, but

required a test time increase of 0.16 second. This slightly longer test time was

expected, since the higher frequencies associated with the sharp corners of a

square wave input were filtered out by the control system lag. Output

variable amplitudes were again within their constrained ranges, see figure 9.

Table 3 shows the results of maximum likelihood estimation of the

model parameters, based on simulated flight test runs using each of the input

designs discussed above and listed in Table 2. Excellent agreement was

obtained between the parameter standard errors in Table 3, and the Cramer-

Rao lower bounds for these standard errors, given in Table 2. This

exceptional agreement was due mainly to the fact that no modelling error

existed for the simulated flight tests and the measurement noise was precisely

known. Real flight test situations do not enjoy such luxuries. As a result, the

performance of the input designs would be degraded in a real flight test

situation. However, Mulder [2] has presented experimental evidence that the

relativ(_ merits of various input designs based on the Cramer-Rao bounds

remain intact when applied in a real flight test environment. This was

demonstrated likewise for the simulated flight test results in Table 3.

The results in Tables 2 and 3 and figures 5 through 9 demonstrate the

quality of the input designs which result from the problem formulation and

solution algorithm described in this dissertation.
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Exam_

This example exhibits the expanded capability of the input design

algorithm by computing the optimal input for a fourth-order model with

twelve model parameters and two inputs, subject to restrictive output

amplitude constraints.

The lateral dynamics of an advanced fighter aircraft in level flight at

10,000 m altitude and an airspeed of 179.7 mps may be represented by the

following dynamic system and measurement model :

0g,vlir0YrlElp LCpCril,CaLNrN NpNFtN a8_. 0 1 0 .c
" (5-7)

where _ is the sideslip angle, p is the roll rate, r is the yaw rate, _ is the roll

angle, 8a is the aileron deflection, and 8r is the rudder deflection. The output

is given by : :_;

oo]y2(t) I = o _ o o , (tl
1 0 :(t)

Y3(t) I 0_0 1

.Y4(t) j 0 ) (t) (5-8)

The constraints are

8 a [ < 0.07 radians 'v't (5-9)

8 r [ < 0.07 radians 'v' t (5-10)

] yl(t) 1< 0.15 radians V t (5-11)

I Y4(t) I < 1.0 radians Vt
(5-12)
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The measurement equations are

iyml i!l[i lYl II
ym4(i)J y4q1. , 4(i)J

i = 1, 2, ..., N

(5-13)

(i) =

m

_1 (i)

v2(i)

_3(i)

_4(i)
m (5-14)

where _(i) is the i th realization of a zero-mean Gaussian white noise vector

random process with the following measurement noise covariance matrix:

0.000361 0.0 0.0 0.0

R = 0.0 0.04 0.0 0.0
0.0 0.0 0.0064 0.0

0.0 0.0 0.0 0.0059
(5-15)

The values for the diagonal elements of R in equation (5-15) are derived from

information in reference [14] concerning appropriate data system

characteristics for aircraft parameter estimation experiments. These values

represent random fluctuations due to the instrumentation system only, and

thus do not include such real effects as modelling error and gusts, which

typically manifest themselves in the measurement noise.

As in the last example, the physical system is represented by the model

structure given above using the true values of the parameters, which are also

assumed to be the a priori parameter values. The true values of the model

parameters are given in Table 4. The above model does not correspond to any

existing fighter aircraft or instrumentation system. The nominal values used

are for demonstration purposes only, although the model structure is quite

generally applicable.
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The output amplitude constraints imposed on the sideslip angle and

the roll angle are such that a straightforward input design using past

experience and heuristic arguments is difficult. A common practical input

design procedure employs doublets in the rudder and aileron with

frequencies close to the damped natural frequency of the aircraft Dutch roll

mode. This type of input is shown in figure 10. A first order lag with time

constant 0.1 second was implemented to model pilot and control system

actuation delay. By trial and error, an input amplitude of 0.07 radian was

found to satisfy the output amplitude constraints using the doublet inputs.

Cramer-Rao bounds associated with this 10 second input design appear in

column 3 of Table 4.

For the optimal input designs, input amplitude constraints were

applied instead of input energy constraints, as discussed previously. The

same input amplitude constraints were used for both control surfaces (see

equations (5-9) and (5-10)), and the controls were sequenced, with the control

switching time, tsw, set to 5 seconds, and the rudder control sequenced first.

Maximum input frequency depends on the minimum pulse width. For this

problem, the assumption was that 0.6 seconds was the minimum time

necessary to acquire a control amplitude and return the control to zero (i.e.,

nominal or trim) deflection.

In order to allow comparison with the doublet inputs, the optimal

input design technique was used to produce a fixed time design by setting the

goals for all Cramer-Rao bounds to zero, and limiting the run of the input

design program to a maximum of 10 seconds. The resulting input design and

output responses appear in figure 11. The Cramer-Rao bounds were lowered

for all parameters (compare columns 3 and 4 of Table 4), with all output

amplitude constraints satisfied.

In figure 12, the optimal input design was performed for the same

problem using a larger (0.1 radian) input amplitude constraint on both inputs.

Allowing a larger input amplitude constraint means that there is potential for

more system excitation over a fixed time, compared to a case with a lower

input amplitude constraint. Thus, one would expect a shorter test time to be

required to reach the same Cramer-Rao bound goals, provided that the output

amplitude constraints can be enforced with the larger input amplitude. For

the case shown here, a minimum time solution was computed. The goals for

the Cramer-Rao bounds were the accuracies associated with the doublet
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inputs in column 3 of Table 4. The same accuracy or better for each parameter

relative to the doublet inputs case was obtained in a shorter total test time of

8.7 seconds, as shown in column 5 of Table 4.

For all input designs presented thus far, the control inputs were

sequenced; that is, only one control was moved at a time. This feature is

helpful when human pilots must implement the input design. For cases

when a computer can realize the inputs, the requirement for sequenced

control inputs can be relaxed. This case is shown in figure 13, using the same

input amplitude as in figure 12. Again, a fixed time solution was computed

by setting all goals for the Cramer-Ra0 bounds to zero with a 10 second

maximum test time. Columns 5 and 6 of Table 4 show that a gain of at least

25% in accuracy for all parameters except those associated with the Y force was

achieved for a 10 second total test time by relaxing the control sequencing

requirement. The improvement in the Cramer-Rao bounds for column 6 of

Table 4 relative to the Cramer-Rao bounds for the doublet inputs ranges from

19.0% for Y_ to 72.4% for N_, based on the Cramer-Rao bounds for the doublet

inputs. All optimal input designs excited the aircraft response as much as

possible to obtain small Cramer-Rao bounds, but still kept the output

response within the imposed amplitude constraints.

This example demonstrates the computation of practical, optimal,

multiple input designs. In addition, the effects of increased input amplitude

constraint values and relaxing the input sequencing were easily quantified in

terms of lower Cramer-Rao bounds for a fixed time design, or reduced flight

test time required to achieve fixed target values for the Cramer-Rao bounds

for a minimum time design. The effects were precisely quantifiable because

of the global optimality of the solutions.
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Example 3

In this final example, the optimal input design technique is used under

conditions which mimic a real flight test situation. The test aircraft is a six

degree of freedom nonlinear simulation of the F-18 fighter aircraft [15]. Only

the longitudinal dynamics of the aircraft are considered.

The F-18 aircraft is designed with inherent longitudinal static

instability, in order to enhance maneuverability and performancel- As a result

of this, the aircraft must operate under closed loop automatic control at all

times during the flight test for safety considerations.

The flight condition is 20,630 ft. altitude and 8 degrees angle of attack at

trim. Geometry and mass characteristics are given in Table 5. The open loop

dynamic model is:

V X V X(_ 0 V X8 h

= 0 ZaZq + Z_h [_h]

0 M_Mq M6 _

. - .... _ ; _...:___-_ ,:2_ '_!-_-_,_:

where_ViS'the airspeed,:_ i-s_l_-e3ng_ of attack, q is the pitch rate, and 8h is

the symmetric stabilator deflection. The output is

(5-16)

[, 001[v ,)1y2(t) / = 0 10||c_(t)|

y3(t) 1 0 0 1 J[q(t)] (5-17)

subject to the constraints

I Yl(t) I< 2.5 ft/sec 'v't (5-18)

[ y2(t) [_< 0.035 radians '¢ t (5-19)
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The measurement equations are

yml(i)"

Ym2 (i)

Ym3 (i)

100

= 010
001

r Yl (i)]lly.,/
_31 (i)]

+ 1)2(i)|

 3(i)J
i =1,2 .... ,N

(5-20)

(i)=

I) 1 (i)]

132(i)[

l)3(i) j (5-21)

where _(i) is the i th realization of a zero-mean Gaussian white noise vector

random process with the following measurement noise covariance matrix:

R

m m

0.25 0.0 0.0

-7
0.0 2.22x10 0.0

0.0 0.0 1.10xl0 -5
(5-22)

A problem in designing an optimal input for this open loop model is

that 5h, the stabilator deflection, is not under direct control of the designer.

The deflection of this control surface is a function of flight condition and

motion variables, as well as the pilot stick input, due to the action of the

control system. It is therefore necessary to model the control system, so that

the input design algorithm can deflect the stabilator indirectly in a manner

which will be most advantageous for accurate estimation of the open loop

parameters in equation (5-16). An adequate model structure for the control

system was found to be:

= .,_

• I 1v'
q

m
(5-23)
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where tie is the longitudinal stick deflection at the pilot station. The output is

Y4(t) = _Sh(t) (5-24)

The measurement equation is

where

Ym4(i) = Y4(i) + _4(i) i=l,2,...,N

r44=E{a94(i) 2} =4.17x10 -9

(5-25)

(5-26)

For the control system model, longitudinal stick deflection, Tie, as well

as the aircraft motion variables V, 0_, and q, are treated as known inputs. This

simple first order model for the control system is adequate for the small

perturbations in _e from trim which are typical of inputs designed for

parameter estimation experiments.

In general, the F-18 control system schedules leading edge and trailing

edge flap deflections with angle of attack. This means that there should be

two more rows in the control system model of equation (5-23) and two more

controls in the open loop model of equation (5-16), corresponding to leading

edge and trailing edge flap deflections. Including these controls, however,

produces a collinearity in the data, since the flap deflections depend linearly

on angle of attack at this flight condition. This causes parameter

identifiability problems which are difficult to surmount. If one does not

account for the fact that the flap settings change with angle of attack, a

parameter estimation algorithm such as maximum likelihood assigns the

effect of the flaps to the angle of attack parameters, thus rendering these

parameter values inaccurate. For these reasons, the flap scheduling was

turned off by setting the computed flap deflections from the flight control

system subroutine inside the F-18 simulation to zero. With this done, the

control system deflected only the symmetric stabilator, 6h, in response to

longitudinal stick deflections.

Combining the open loop dynamic model in equation (5-16) with the

control system model in equation (5-23), and assuming that the measurement
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noise in (5-20) is uncorrelated with the measurement noise in (5-25), gives the

model for the closed loop longitudinal dynamics. The stabilator deflection is

treated as an element of an augmented state vector, and can be viewed as an

additional state, since its dynamics depend on state variables and the input,

which is longitudinal stick deflection, Tle. In the notation already introduced,

the closed loop model takes the form:

xvxooxql 
ozoZqzql •

(5-27)

y_(t) 1 0 0 0

Y2(t) 0 1 0 0

y3(t) 0 0 1 0

y4(t) 0 0 0 1

q

{t) I

c (t)

c (t) I
i

8 ,(t) I
.1 (5-28)

subject to the constraints

[ y](t) I< 2.5 ft/sec V t (5-29)

] Y2(t) 1_< 0.035 radians V t (5-30)

The measurement equations are

• w

Yml(i)

Ym2 (i)

Ym3 (i)

Ym4(i)

1 0

0 1

0 0

0 0

O0

O0

I 0

0 1

Yl (i)

y2(i)

Y3(i)

y4(i)
= =

+

m

J1 i) I

_2 i) l

J3 i) I

.)4 i) I

i = 1, 2, ..., N

(5-31)
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where

R

m n

0.25 0 0 0

-7
0 2.22x10 0 0

0 0 1.10xl0 "5 0

-9
0 0 0 4.17x10

m (5-32)

The open loop dynamic model (5-16) and the control system model

(5-23) must be considered separately to estimate their respective parameters

using maximum likelihood estimation. This is because the maximum

likelihood parameter estimation algorithm integrates the dynamic and

sensitivity equations using candidate model parameters as part of the process

of finding parameter estimates. When attempting to estimate all the

parameters in the closed loop model (5-27) using the data from a simulated

experiment, the maximum likelihood algorithm diverges for nearly any

initial values of the parameters, unless these initial values are very close to

the "true" parameter values. This happens because the open loop system is

inherently unstable. Estimating parameters in the open loop model (5-16)

treating the closed loop stabilator from the experiment as a known input, and

then separately estimating the parameters in the control system model (5-23),

treating %, V, 0_, and q from the experiment as known inputs, eliminates the

problem of a divergent parameter estimation algorithm. This separated

estimation procedure was used to obtain all parameter estimates from

simulated experimental data in this example.

In accord with what might be true for a real flight test input design

problem, it was assumed that the only available data from which to assemble

an a priori model for the input design were from a simple doublet input

sequence for the longitudinal stick deflection, %. This doublet was in fact

taken from an actual pilot input during the flight test of the real F-18 aircraft,

see Klein et ai [16]. The simple doublet input and the output time histories

which result from applying this input form to the F-18 simulation test aircraft

appear as figure 14. A first order lag with time constant 0.05 second was used

in producing this input form. The same control input dynamics were used

for all input forms in this example.
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Based on the information from the simple doublet input, parameter

estimates for the closed loop model were determined using maximum

likelihood estimation and the separated model procedure described above.

The dotted lines in figures 14(b) through 14(e) indicate model fits for each

variable, as computed using the separated model procedure. The parameter

estimates from the doublet input are given in Table 6. These parameter

estimates and the model structure in equation (5-27) comprised the a priori

model for the optimal input design. Figures 14(t') through 14(i) show the

model responses using the closed loop model (5-27) and the parameter values

from Table 6, as compared to the open loop model responses, which are the

same as the dotted lines in figures 14(b) through 14(e).

The parameters of principal interest in the open loop dynamic model

of (5-16) are contained in the bottom two rows, and are generally associated

with the two state approximation of the short period dynamics. For the

doublet input, the drag equation (top row) of (5-16) is included in the open

loop model for two reasons. First, it was discovered that the control system

model fit and predictive capability were considerably improved by including

the velocity term in the control system model (5-23). This control system

model fit is shown in figure 14(b). Second, the two state short period

approximation is valid only for small changes in the velocity from trim.

Thus, the input for parameter estimation must be designed so that the

velocity excursions from trim are small in order to ensure validity of a two

state short period model structure. The velocity is considered an output

variable with the amplitude constraint (5-18). The model for the velocity (top

row of (5-16)) must be included in the closed loop model (5-27) used for the

optimal input design, so that maximum velocity changes from the trim value

can be limited. Then the two state short period model_can be used without

significant degradation in parameter accuracydue to an invaiid model

structure. In general, using the open loop model (5-16) for inputs which do

not excite the velocity very much (such as the simple doublet input) produces

poor estimates of the parameters in the top row of equation (5-16). However,

the model structure in (5-16) is required to build the a priori closed loop

model (5-27) needed for the optimal input design.
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With the velocityperturbationslimited (equation (5-18)),all

subsequent parameter estimationcan be based on the two stateshort period

model:

.Fzoz,l +
LM Mqj [Sh]

O][q<Oly2(t)j (t)j

(5-33)

(5-34)

Yml i)

Ym2(i)
[Y,(i)l += [_ 7] y2(i)J [_2(i>J

i -- 1,2, ...,N

(5-35)

R

2.22x10 7 0.0 ]
0.0 1.10x10 "5 (5-36)

A longitudinal stick input design proposed by Klein et al [16] was

applied to the F-18 simulation test aircraft, with the input amplitude adjusted

by trlal-aii_error _ii_ the ve]oci_ and a:ngleo{a_ck ampHtucle constraints

_re saflsfleK-Tlifs"in_uCw]lT-be referred to as-the Coml:_und doublet input.

The time histories from the experiment using the compound doublet input

are shown by the solid lines in figure 15. The dotted lines in figures 15(b) and

15(c) show the model fits for a and q, respectively, from maximum likelihood

estimation using the open loop model (5-33). Closed loop stabilator deflection

from the F-18 nonlinear simulation is shown in figure 15(d).

The optimal input technique was applied using the closed loop model

(5-27) with the model parameters from Table 6 as the a priori model. The

optimal input design and time histories from the experiment using the F-18

simUiafion_-&fai_ft_areshowh in_figurd 16. A fixed time inputdesign was

produced b_-s6tfirig aliCramer-Ra0 botind goals to zero, and setting the __

maximum test time to 8.0 seconds. A first order lag with time constant 0.05

second was used for the longitudinal stick control dynamics. The 0.75 inch

maximum input amplitude for the optimal input was determined



automatically by the algorithm. Maximum input amplitude was initially set

at 1.0 inch, to agree with the maximum input amplitude for the simple

doublet. Input amplitude decrements were set at 0.25 inch to design an input

with an amplitude which could be easily input by the pilot. The algorithm

thus required one iteration on the problem formulation to arrive at the final

input amplitude of 0.75 inch. Minimum input pulse width was set at 0.5

second, and the final time required with zero input amplitude was 0.4 second.

Table 7 gives the results of maximum likelihood estimation using the

data from each of the input designs. The parameter values listed in the

second column were obtained using finite differences with the nonlinear F-18

simulation. The standard errors for each parameter are lowered using the

optimal input, except for the small parameter Z_ h , which is difficult to

estimate accurately because of its small magnitude. Figure 16(a) shows the

optimal input, and figures 16(b) and 16(c) give the F-18 simulation responses

and the model fits using the open loop model (5-33) and maximum

likelihood parameter estimates. The closed loop stabilator deflection from

the F-18 simulation is shown in figure I6(d). Figures 16(e) through 16(h)

compare the time histories from the optimal input experiment with the

computed time histories from the optimal input design algorithm using the a

priori closed loop model (5-27) with parameters from Table 6. The time

histories from the experiment violate the imposed output amplitude

constraints because the closed loop model estimated from the doublet input

does not exactly describe the nonlinear response from the F-18 simulation.

The a priori closed loop model time histories in figures 16(e) through 16(h)

satisfy the output amplitude constraints (5-18) and (5-19), as required.

The example presented here demonstrates that the optimal input

algorithm can be successfully used for optimal input design problems when

the estimation of open loop parameters is required, but only closed loop data

are available. For modern fighter aircraft, this situation has become the norm

rather than the exception.

50



Chapter VI - Summary. and Conclusions

This dissertation describes a new formulation of the optimal input

problem for aircraft parameter estimation experiments, the development of a

new solution algorithm for the optimal input design, and the demonstration

of the capabilities of the new technique. The examples presented are mainly

for demonstration purposes.

The optimal input design for aircraft parameter estimation

experiments was done in the time domain using the principles of dynamic

programming. The problem was formulated with the objective of achieving

specified Cramer-Rao bound goals in a time optimal fashion or minimizing

the Cramer-Rao bounds for a fixed test time. Optimization in the time

domain using the dynamic programming approach allowed various practical

aspects of the input design to be incorporated in a straightforward manner.

Bellman's principle of optimality was enforced so that the designed inputs

were globally time optimal, subject to the imposed constraints on the input

form, the output amplitude constraints, the dynamic and measurement

models, and the discretization of both time and the constrained output

variables in the formulation of the dynamic programming problem.

The first example presented in this work demonstrated that the present

approach to optimal input design for aircraft parameter estimation improves

on previous solutions by lowering the Cramer-Rao bounds and/or requiring

a shorter total test time.

In the second example, the expanded capability of the optimal input

design technique was exhibited by application to a fourth order multiple

input system with restrictive output amplitude constraints. The input design

solution contained provisions to assist in the practical implementation of the

designed inputs.

The third example developed a procedure for the use of the optimal

input design technique when open loop model parameters are of interest, but

the system must be tested under closed loop control due to safety

considerations. Conditions for a real flight test of the F-18 fighter aircraft were

simulated, and the utility of the optimal input design technique was

demonstrated.

The capabilities of the new algorithm can be summarized as:
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1. Global optimum solution for minimum or fixed flight test time

2. Multiple input design capability

3. Closed loop model capability

4. Practically achievable input design

5. Direct implementation of output amplitude constraints

6. Input frequency selection in the time domain

7. Single pass solution

8. Well-suited to design studies

The main contributions of this work are the formulation and practical,

optimal solution of the input design problem for aircraft parameter

estimation experiments, along with the demonstrations of the improved

quality of the optimal inputs and the expanded capabilities of the optimal

input design technique.

Based on the findings documented in this work, conclusions and

recommendations for further study are listed below.

1. The optimal input design technique should be evaluated with

regard to pilot acceptability as compared with conventional input

designs. A ground-based simulator could be used for this study.

2. Application to a free flight wind tunnel model test, drop model test,

or full scale flight test would verify the predicted capabilities of the

optimal input design technique.

3. Other input design problems which could be addressed using the

input design procedure outlined here include experiments for data

compatibility check of the flight Instrumentation system, and input

designs to reduce parameter correlation. The latter should be

straightforward, since the input design technique currently computes

the full dispersion matrix recursively, and parameter correlation can be

computed from the off-diagonal terms of this matrix, normalized by

the appropriate diagonal elements.
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4. A study could be done to determine the effect on the optimal input

design of inaccuracy in the a priori model, i.e., the robustness of the

optimal input design technique.

5. Studies concerning various trade-offs among experiment design

parameters could be done. For instance, what are the effects of different

measurement noise characteristics or different control system

dynamics on the optimal input design and the resulting achievable

parameter accuracies ?

6. Although the optimal input technique was developed for aircraft

dynamic models, any other physical system which can be described

with a linear state space model structure could have been the subject of

the input design for a parameter estimation experiment.
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Appendix A - The Information Matrix and the

Cramer-Rao Lower Bol_.nd

In this appendix, the form of the information matrix used to design

optimal inputs for parameter estimation is derived. Following this, it is

shown that the inverse of the information matrix is the theoretical lower

bound on the parameter covariances. This lower bound is called the

Cramer-Rao lower bound for the parameter covariances.

Consider the following state, output, and measurement equations :

i(t) - f (x(t), u(t), 0 ) , x(0) = 0 (A-l)

y(t) = h (x(t), u(t), 0 )

ym(i) -- y(i) + _(i)

El (i) I = 0 , E{ _<i> _)T(j>} = R'Si j

(A-2)

(A-3)

(A-4)

The sequence of measured output vectors is ym(i), i=1,2,3,...,N, where

N is the total number of sample times. For a given parameter vector 0 in the

state and output equations (A-l) and (A-2), respectively, assuming each ym(i)

is a realization of a Gaussian vector random process, the joint conditional

probability of realizing the observed sequence of measured output vectors is

[17]:

.q_

p(ym(1),Ym(2),...,Ym(N) I 0) = (2_) 2 /R l" exp{_ 1 T -1i--1-2-fYm(i)-y(i)] R [Ym(i)-y(i)] }

(A-5)

The object of parameter estimation is to choose a parameter vector 0 for 0 in

expressions (A-l) and (A-2) such that the conditional probability in (A-5) is

maximized. Usually the natural logarithm of equation (A-5) is used for

computational simplicity. Since probabilities are always positive, and the

natural logarithm function is a monotonically increasing function for
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positive arguments, the same 0 vector maximizes both the probability in

(A-5) and its logarithm. The logarithm of the probability in equation (A-5)

will be denoted by L( 0 ) and is generally referred to as the log likelihood

function:

L( 0 ) = In [p(Ym(1)'ym(2),...,ym(N) I 0)] (A-6)

L( 0 ) = - -_q ln(2_)

N
1 T

+ In,R,]+ _-2--[ym(i)-y(i)] R-l[Ym(i)-y(i)]
i=l

(A-7)

The information matrix is defined in terms of the log likelihood

function [17]:

(A-8)

where E{.} denotes the conditional expectation taken over all possible

realizations of the measurement vector sequence, ym(i), i=1,2,3,...,N and

conditioned on the parameter vector, 0. Using (A-6), equation (A-8) may also

be written as:

IO ln[p(Y I 0)]

M=E t O0

c3 ln[p(Y I 0)]

"1" (A-9)

where Y represents the sequence of measurement vectors, ym(i), i=1,2,3,...,N.

At this point, a small side excursion is made to find an alternate

expression for the information matrix, M. Let Y denote a particular

realization of the measurement vector sequence, ym(i), i=1,2,3,...,N. Then, by

the definition of conditional probability density functions,

(Y I 0)dY = 1
(A-10)
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The notation here implies that the integral is taken over all possible

realizations of the measurement vector sequence, ym(i), i=1,2,3,...,N.

differentiation,

By

/)p(Y I O) = p(Y I O) o(In[p(Y [ 0)])
_0 30 (A-11)

Differentiating (A-10) twice with respect to 0, and using (A-11) each time,

_ 2 ln[p(Y I 0)]bO bOT + (2 ln[p(Y I0)]20 In[p(YlooT 0)])]
p(YI O) dY=O

(A-12)

Or, using the expectation operator notation, and recalling (A-6),

EJOL(O) OL(O)! -[O2L(O) }
(A-13)

Invoking (A-8),

 toL'o OL'O I EJO2L O'I
(A-14)

Equation (A-14) contains the allernate expression for the information matrix,

M. For the system (A-l) - (A-4), the information matrix may be expressed as

follows by combining (A-3), (A-4), (A-7), and (A-14), and keeping in mind that

the measurement vector ym(i) is considered a realization of a random vector

sequence, and is therefore not a function of 0 :

M=[ _ (_Y(i)_TR -I (OY(i)._l

i= I k 20 J _--_)JL (A-15)
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It will now be shown that the inverse of the information matrix is the

theoretical minimum value for the covariances of the elements in the
A

estimated parameter vector, 0. The dependence of L(0) on the input is

through the state, output, and measurement equations, (A-l) - (A-4); see also

(A-7).

Let Y again denote any realized sequence of measurement vectors,

ym(i), i=1,2,3,...,N. Then for an unbiased estimator [1],

(A-16)

Differentiating (A-16) with respect to 0 gives

"I_I'p(YIO) dY + f_( _(Y)-0)op(YI0)o0.r
dY = 0

(A-17)

The first integral on the left in (A-17) is the identity matrix by the definition

of the conditional probability density function. Substituting into the second

integral on the left from equation (A-11),

/. _(0(Y)- O) 0(ln[p(Y I 0)])
"r

O0
p(YI0) dY=I

(A-18)

The last equation may also be written as

E { (0(y) _ 0) 3(ln[p (Y I0)]) }
30

=I

(A-19)

The following lemma is now required [1]:
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L_mma A._..! Let x and y be two random p-dimensional vectors. Then,

E{ x xT} > E{ x yW} [E{ y yT}] -1 E{ y x T} (A-20)

Proof:

Let Q be an arbitrary non-random p-by-p matrix.

covariances must be non-negative,

E{(x-Qy)(x-Qy) T} -> 0

Then, since all

(A-21)

Expanding the left side of (A-21),

E{ x x T }- QE{ y xT}- E{ x yT} QT + QE{ y yT} QT > 0

E{ x xT } > QE{ y x T} + E{ x yT} QT QE{ y yT} QT

(A-22)

(A-23)

Now choose

Q = E{ x yT} [E{ y yT}]-' (A-24)

so that the two terms on the far right of (A-23) cancel. Substituting (A-24) into

(A-23) and simplifying,

E{ x x T} > E{ x yT}[E{ y yT}]" E{ y xT) (A-25)

This ends the proof of the lemma.

Returning to (A-19), and invoking lemma A.1 (Equation (A-25)) with

^ 3 ( ln[p(Y ] 0)])
0(Y) - 0 = x ; = y

3O
(A-26)
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gives

-- " "I

00 0e T
(A-27)

Or, using (A-9),

{(^ )(^E 0(Y) - 0 0(Y) - 0 -> M-_ (A-28)

Equation (A-28) is called the Cramer-Rao inequality and states that the

minimum expected values of the parameter covariances for an unbiased

estimator are given by the inverse of the information matrix. This latter

matrix is also referred to as the Cramer-Rao lower bound for the parameter

covariances, or the dispersion matrix, D:

D = M-1 (A-29)

When designing the optimal input for the purpose of parameter estimation,

only the dispersion matrix is considered, since this separates the merits of an

input with regard to the parameter estimation accuracy from the merits of

whatever unbiased estimator may be chosen for the parameter estimation. In

effect, an input form is evaluated "upstream" of the actual parameter

estimation calculations by looking only at the theoretical minimum

parameter covariances possible with that input form, as embodied in the

elements of the dispersion matrix. The dispersion matrix depends only on

the sensitivities of the output quantities to changes in the parameters. In

general, the higher these sensitivities, the more accurately the parameters can

be estimated, since small changes in parameter values will be manifested in

large changes in the model output for the system. With large values for the

sensitivities, the parameter values may be determined very accurately by

matching measured output with output from the proposed model. The

diagonal elements of the dispersion matrix are of principal interest, since they

are the theoretical minimum values of the parameter variances. The square

root of these diagonal elements are the theoretical lower bounds on the

parameter standard errors.
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For the system (A-l) - (A-4), the dispersion matrix may be expressed as

follows by combining (A-15) and (A-29):

R-1 (_gY(i)/1 -

(A-30)

No assumptions of linearity in the system equations (A-l) - (A-4) were

necessary in this development.
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Appendix B - Dynamic Programming

The algorithm for input optimization described and demonstrated in

this dissertation employed the principles of dynamic programming. The

purpose of this appendix is to provide an understanding of the fundamental

concepts of dynamic programming in the form required for the present work.

These fundamental concepts are completely contained and described in

references [I0] and [11], along with more specialized information concerning

dynamic programming and the connection between dynamic programming

and the calculus of variations.

Dynamic programming is an efficient means of solving sequential

multi-stage optimization problems. In figure B-l, the dots represent various

states of some abstract system. Time is represented by horizontal distance left

to right, with time zero at the leftmost edge. Time is discretized into stages, so

that the system states exist only at times which are an integer multiple of one

stage time. The lines between the dots represent a specific control choice,

which results in the state trajectory starting from the dot representing the

initial system state and ending at the dot representing the final system state at

the next time stage. Each possible control is applied as a constant over one

stage time, so that each possible state transition (connecting line) corresponds

to a possible control choice at the initial state. State transitions must always

move left to right, corresponding to increasing time. All state transitions

shown in figure B-1 are associated with a cost, which is shown as a number

along the state transition line. The objective is to reach one of the target

states, represented by the column of dots aligned above the final time stage, by

starting at the initial state and optimizing the sequence of state transitions

such that the total cost of the travel from the initial state to one of the possible

final states is a minimum. Since each state transition corresponds to a control

choice at the current state, the objective may also be considered to be the

optimization of a sequence of control choices. The optimal sequence of

control choices is called the optimal policy. The problem described here is

often referred to as a discrete multi-stage optimization.

An exhaustive search for the optimal policy would require the

investigation of 2 n-1 different paths, where n is the number of discrete time

stages from the initial condition to one of the target states at the final time

stage, inclusive. The base 2 in the above expression results from the fact that
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only two choices are possible at any state for any stage. As the number of

stages (or the number of control choices) increases, the exhaustive search

quickly becomes prohibitive in terms of computation time. There is an

alternative method for the computation of the optimal policy, which is

known as "the principle of optimality", due to Richard Bellman. In the form

required here, this principle states :

An optimal sequence of decisions in a multistage decision process problem

has the property that whatever the final decision and state preceding the

terminal one, the prior decisions must constitute an optimal sequence of

decisions leading from the initial state to that state preceding the terminal

one. 1

In figure B-2, the optimal policy was computed by moving left to right

and using the above principle of optimality. The arrows along the state

trajectory lines indicate the control and state trajectory which represents the

best path (lowest total cost) to reach the given state from the immediately

preceding stage. The italic number at each state indicates the value of the cost

required to reach that state at that time stage, using the optimal policy

indicated by the arrows. Figure B-2 represents the results of applying the

principle of optimality to each state of each stage in a sequential manner,

moving left to right. The bold line in figure B-2 indicates the overall optimal

policy and thus the optimal state trajectory, since this path gives the lowest

cost from the initial state at the initial stage to any of the states at the final

stage, using an optimal policy.

The principle of optimality not only gives a systematic method for

choosing an optimal policy from a large number of possibilities, but also does

so in a way which realizes a significant savings in computation over an

exhaustive search. It is this latter quality which makes dynamic

programming a practical tool for optimization.

1 Dreyfus, S. E. 1965. Dynamic Progra__ming and the Calculus of Variations.

New York : Academic Press. p. 8.
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In Table B-l, the computations required to solve this multi-stage

optimization problem are compared for the dynamic programming solution

method versus an exhaustive enumeration, using an increasing number of

stages. The general expressions for the number of additions and comparisons

using dynamic programming and exhaustive enumeration are shown at the

top of Table B-1 as a function of the number of stages, n. The total number of

additions and comparisons required for a dynamic programming solution

with the grid geometry of figure B-1 is on the order of n 2 and 3n, respectively;

whereas exhaustive enumeration calculations are on the order of n2 n-I and n,

respectively. Dynamic programming enjoys a considerable computational

advantage over exhaustive enumeration, even for a relatively small number

of total stages, as shown in Table B-1. This computational advantage becomes

even more dramatic when there are more than two control choices at any

state.

The grid geometry in figure B-1 and B-2 might be considered a discrete

multi-stage optimization with no state constraints, since for all states at all

stages except the last, the full range of controls and accompanying state

transitions are available. That is, a state transition "up" or "down" diagonally

was possible from any state at any stage except the last. State constraints can

be introduced by arranging the grid geometry as shown in figure B-3. Here,

states on the border of some interior stages have only one control choice or

state transition possibility to the next stage. This can be interpreted as a

constraint on deviation of the state from the initial state in the abstract sense

corresponding to vertical displacement within the grid.

Although the entire discussion here considered the state of some

abstract system, the output of the same abstract system could just have well

been used with absolutely no change in any of the development. In fact, the

present work considers the dots within each grid as representative of some

abstract system output at the given stage. The reason for this is so that the

constraints will be on the output variable excursions from their initial values.

Real dynamical systems are generally modelled as continuous systems

whose states, outputs, and controls exist at any time. In order to use the

dynamic programming optimization technique as presented here, it is

necessary to discretize the continuous problem corresponding to physical

reality. This is done by dividing an allowable range of output variable

excursions into small subdivisions. For the case of two constrained output
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variables, the allowable output space at any stage can be represented by a plane

region divided into discrete output space boxes, as in figure B-4. Outputs are

computed from the continuous dynamic and output equations. Those

outputs which fall inside or on part of the border of a given box in output

space are considered the same output "state", corresponding directly with the

dots in figures B-1 and B-2. In this way the continuous problem is converted

into a discrete problem. All controls are constrained to remain constant over

the time period corresponding to one stage time, so that time can be

discretized into stages. The cost computed for each control possibility in the

optimal input design algorithm is directly analogous to the costs associated

with each state transition in figures B-1 and B-2, the latter being represented

by the numbers next to each state transition line. This completes the

conversion of the continuous problem into a discrete multi-stage

optimization, which can be handled using the principle of optimality in the

manner described above.
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_ - Algorithm Flow Chart

The following pages contain a functional flow chart for the algorithm

used to design optimal inputs for aircraft parameter estimation experiments.

The numbers in parentheses refer to equation numbers in the text.
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Figure B-3 - Constrained Dynamic Programming Grid
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Table I - Saved Variable List

_y_cd__!ri,.,_tles, CurrentTime Stage Only. All Reachable Output Space Boxes

1.) state vector, x (n x 1 real vector)

2.) state sensitivities, Ox/30 (n x p real matrix)

3.) input amplitudes, UASTR (m x 1 real array)

4.) input information, IREPU (3 x 1 integer array)
contains:

a.) index of last control (integer)

b.) number of stages a.) was applied (integer)
c.) index of last control different from a.) (integer)

5.) [djk] V j > k, (p(p+l))/2 real elements)

where Di = [djk] i,

j=l,2,...,p

k=l,2,...,p
i=time stage index

Saved yariables. Initial to Current Time Stage. All Reachable Output Space Boxes

1.) input sequence
control indices, IOPTU (i x I integer vector)

154



Parameter

MQ

Mq

M8 e

Max.Amp.
(rad.)

Total Time

(sec3

- Sin_e Input Design Result_

Parameter Cramer-Rao bounds
Values

-0.737

o.o05

-0.562

-1.588

-1.660

Figure 5
Mehra
(Ref. 5)

0.0364

0.025_

0.0660

0.173]

0.0988

12.5

4.0

w

Figure 6
Chen

(Ref. 9)

0.0332

0.0212

0.0663

0..!247

0.0740

i i z ul

Figure 7 Figure 8
Optimal Optimal

Input,
Chen

Amp.

0.0358

0.0231,.

0.0658

0.1167

0.0682

8.792

Input,
Mehra

Amp.

0.0351

0.0214

0,0641

0.1005

0.0528

12.5

3.04

Figure 9
Optimal

Input,
Mehra

Amp.

with lag

0.0343

0.0213

0.0647

0.1053

0.0559

12.58.792

3.96 3.68 3.20
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Z8e

OZs°

M a

(_M a

M8 e

OMs,

- Sin_e Input Maximum Likelihood Results

True Mehra Chen Optimal Optimal Optimal
Value (Ref. 5 ) (Ref.9) Input, Input, Input,

Chen Mehra Mehra Amp.
Amp. Amp. with lag

-0.7370 -0.7531 -0.7104 -0.7_18 -0.7_)60 -0.7_31

0.0369 0.0329 0.0366 0.0362 0.0.344

0.0238

0.0212

0.005 0.0045 0.0227 0.0232 ......0.0223

_. 0.0261 0.0209 0.0232 0.0213

-0.5620 -0.5481 -0.5629 -0.5780 -0.6598

0.0690 0.0651 0.0675 0.0639

-1.5880 -1.7050 -1.5921 -1.5979 -1.4670 -1.6232

0.1829 0.1232 0.1158 0.0978 0.1035

-1.660 -1.7552 -1.6516 -1.6900 -1.5857 -!.7097

_.!064 0.07_6 0.0688 0.0507 0.0566
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Table 4 - Multivle Invut Desi2n Results

Parameter

Y8 r

Lp

L r

L8 a

L8 r

Np

N r

N8 a

N8 r

Parameter

Values

-0.10750

, -!.2039

0.9029

-16.8280

2.4040

2.8640

-0.0090

-0.2.2.41

-o.3.58.0

q.79oo

Max.Amp.
(rad.)

Total Time
(sec.)

Figure 10
v

0:O49.3_

0.0231

0.4954

0.0903

0.3990

0.7133

0.2883

o.10  

0.0171

0.07_6

0.!_20

10.0

Cramer-Rao bounds
, Jl

Figure 12
w

0.0447 0.0422

Figure 11

0.0201 0.0216.

O.3220 O.4202

0.0626

0.2249

0.4606

0.2358

0.0491

0.0107

,, 0.O493

0.0826

0.0298

0.07

10.0

0.0702

0.3000

0.6317

0.2299

0.0617

0.0124

0.0543

0.0946

,0.0378

0.10

8.7

Figure !3,

0.0383

0.0187

0.2761

0.0490

0.1442

0.4029

0.1726

0.0284

0.0059..

0.0363

0.0539

0.027!

0.10

10.0
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_a]Zle.._ - F-18 Geometry _nd Mass Characteristics

Total length, m 17.07 _..... -

Wing: ....
Are_, m 2

Span, m

Mean geometric chord, m

Aspect Ratio
Quarter-chord sweep angle, deg

37.16
11.41

3.51
3.5

20.0

Horizontal Tail:

Area (wetted), m 2

Span, m

Mean geometric chord, m

Aspect ratio
Quarter-chord sweep angle, deg
Moment arm (c.g. at 0.25 m.a.c.), m

16.35
6.58
1.91
2.4

42.8
5.12

Weight, lbs 31,748.9

Inertia:

Ixx, slug-ft 2

Iyy, slug-ft 2
Izz, slug-ft 2

Ixz, slug-ft 2

22,294.7

123,095.3

138,116.7

-1797.4

c.g. location:
fuselage station, in
buttock line, in

water line, in

456.0
0.0

103.4
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Table 6 - F-18 Closed Loop Mo_del Parameter Estimates

(from simple doublet input)

Parameter

XV

X(i

Xsh

Z_

Zq

Z8h

Ms

Mq

MSh

gV

.q

I.tSh

_tTle

Parameter

Value

0.0977

-47.4030

0.9555

-0.0024

-0.9422

-0.2867

-0.079!

-0.3488

188.2560

268.4946

-14.7542

-55.2387
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Table 7 - F-18 Maximum Likelihood Results

Parameter

ZcL

Parameter

Values

-0.4906

Figure 14

-0.4169

Figure 15

-0.3506

0.0112

Figure 16

-0.3553

Gz_ 0.0135 0.0080

Zq 0.9902 0.9555 0.9487 0.9665

GZq 0.0060 0.0068 ..... 0.0035

Z_h -0.0017 -0.0024 -0.0059 -0.0023

_Z8 h

M
(X

(_M a

-1.0570

-0.3289

-0.0755

M
q

(_Mq

0.0001

-0.9422

0.0076

-0.2867

0.0131

-0.0791

0.0005

8.0

(_MSh

0.0001

-0,9588

0.0068

-0.2397

0.0112

-0_0733

0.0005

0.5

8.0

Max.Amp.

(in.)

Total Time

. (sec.)

0.0001

-0.7368

0.0036 .

-0.3024

0.0075

-0.0766

0.0003

0.75

8.0

.w-C"
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5

10

2O

-Comvutational Load Contrast

Dynamic Programmin_ Exhaustive Enumeration

n-1

_2i ffi n2-n-2
1-2

70

340

2(n-2) + (n-l) = 3n - 5

10

25

55

Additions

2n-1* (n-2)

48

4096

9,437,184

m_C_o.mlzar.tw_ 

n-1

4

9

18

3

Y
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